論文の概要: GrOVe: Ownership Verification of Graph Neural Networks using Embeddings
- arxiv url: http://arxiv.org/abs/2304.08566v1
- Date: Mon, 17 Apr 2023 19:06:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 16:41:22.544659
- Title: GrOVe: Ownership Verification of Graph Neural Networks using Embeddings
- Title(参考訳): GrOVe: 埋め込みを用いたグラフニューラルネットワークのオーナシップ検証
- Authors: Asim Waheed, Vasisht Duddu, N. Asokan
- Abstract要約: グラフニューラルネットワーク(GNN)は、大規模グラフ構造化データから推論をモデル化および描画するための最先端のアプローチとして登場した。
以前の研究によると、GNNは抽出攻撃をモデル化する傾向がある。
GrOVeは最先端のGNNモデルフィンガープリント方式である。
- 参考スコア(独自算出の注目度): 12.432907264275908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have emerged as a state-of-the-art approach to
model and draw inferences from large scale graph-structured data in various
application settings such as social networking. The primary goal of a GNN is to
learn an embedding for each graph node in a dataset that encodes both the node
features and the local graph structure around the node. Embeddings generated by
a GNN for a graph node are unique to that GNN. Prior work has shown that GNNs
are prone to model extraction attacks. Model extraction attacks and defenses
have been explored extensively in other non-graph settings. While detecting or
preventing model extraction appears to be difficult, deterring them via
effective ownership verification techniques offer a potential defense. In
non-graph settings, fingerprinting models, or the data used to build them, have
shown to be a promising approach toward ownership verification. We present
GrOVe, a state-of-the-art GNN model fingerprinting scheme that, given a target
model and a suspect model, can reliably determine if the suspect model was
trained independently of the target model or if it is a surrogate of the target
model obtained via model extraction. We show that GrOVe can distinguish between
surrogate and independent models even when the independent model uses the same
training dataset and architecture as the original target model. Using six
benchmark datasets and three model architectures, we show that consistently
achieves low false-positive and false-negative rates. We demonstrate that is
robust against known fingerprint evasion techniques while remaining
computationally efficient.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、ソーシャルネットワークなどのさまざまなアプリケーション設定において、大規模グラフ構造化データから推論をモデル化し、描画するための最先端のアプローチとして登場した。
GNNの主な目標は、ノードの特徴とノード周辺の局所グラフ構造の両方をエンコードするデータセットにおいて、各グラフノードへの埋め込みを学ぶことである。
gnnがグラフノードに生成する埋め込みは、gnnに固有のものだ。
以前の研究によると、GNNは抽出攻撃をモデル化する傾向がある。
モデル抽出攻撃と防御は、他の非グラフ設定で広く研究されている。
モデル抽出の検出や防止は困難であるように思われるが、効果的なオーナシップ検証技術によってそれを抑止することは、潜在的な防御となる。
グラフ以外の設定では、指紋モデルやそれらの構築に使用されるデータは、オーナシップ検証に有望なアプローチであることが示されている。
我々は,対象モデルと被疑者モデルが与えられた場合,被疑モデルが対象モデルとは独立に訓練されたか,あるいはモデル抽出によって得られた対象モデルのサロゲートであったかを確実に判断できる,最先端のgnnモデルフィンガープリントスキームであるgroveを提案する。
GrOVeは、独立モデルが元のターゲットモデルと同じトレーニングデータセットとアーキテクチャを使用している場合でも、サロゲートと独立モデルを区別できることを示す。
6つのベンチマークデータセットと3つのモデルアーキテクチャを用いて、偽陽性率と偽陰性率を一貫して達成していることを示す。
我々は, 計算効率を保ちつつ, 既知の指紋回避技術に対して頑健であることを示す。
関連論文リスト
- Stealing Training Graphs from Graph Neural Networks [54.52392250297907]
グラフニューラルネットワーク(GNN)は、様々なタスクにおけるグラフのモデリングにおいて有望な結果を示している。
ニューラルネットワークがトレーニングサンプルを記憶できるため、GNNのモデルパラメータはプライベートトレーニングデータをリークするリスクが高い。
訓練されたGNNからグラフを盗むという新しい問題について検討する。
論文 参考訳(メタデータ) (2024-11-17T23:15:36Z) - Graph Mining under Data scarcity [6.229055041065048]
汎用グラフニューラルネットワーク(GNN)上に適用可能な不確実性推定フレームワークを提案する。
エンド・ツー・エンドの設定で、$n$-way、$k$-shotという古典的なエピソード学習パラダイムの下でこれらのモデルをトレーニングします。
提案手法は,GNNを用いたグラフ上のFew-shotノード分類における不確実性推定器の有効性を示すベースラインよりも優れる。
論文 参考訳(メタデータ) (2024-06-07T10:50:03Z) - Efficient Model-Stealing Attacks Against Inductive Graph Neural Networks [4.552065156611815]
グラフニューラルネットワーク(GNN)は、グラフ構造で組織された実世界のデータを処理するための強力なツールとして認識されている。
事前に定義されたグラフ構造に依存しないグラフ構造化データの処理を可能にするインダクティブGNNは、広範囲のアプリケーションにおいてますます重要になりつつある。
本稿では,誘導型GNNに対して教師なしモデルステアリング攻撃を行う新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-20T18:01:15Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
グラフニューラルネットワーク(GNN)は、さまざまな領域にわたるグラフデータのモデリングに広く応用されている。
近年の研究では、特定のモデルのトレーニングや、よく訓練されたGNN上でのデータ修正に重点を置いて、OOD検出のグラフを調査している。
本稿では、GNNアーキテクチャのトレーニングデータと修正から独立して動作する、データ中心、教師なし、プラグアンドプレイのソリューションを提案する。
論文 参考訳(メタデータ) (2024-01-10T08:37:39Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Watermarking Graph Neural Networks by Random Graphs [38.70278014164124]
GNNモデルに透かしを施す動機となるGNNモデルの所有権を保護する必要がある。
提案手法では,ランダムなノード特徴ベクトルとラベルを持つエルドス・レニー(ER)ランダムグラフを,GNNを訓練するためのトリガとしてランダムに生成する。
モデル検証において、マークされたGNNをトリガーERグラフで活性化することにより、ウォーターマークを出力から再構成してオーナシップを検証することができる。
論文 参考訳(メタデータ) (2020-11-01T14:22:48Z) - Efficient Robustness Certificates for Discrete Data: Sparsity-Aware
Randomized Smoothing for Graphs, Images and More [85.52940587312256]
本稿では,初期作業を想定したランダム化平滑化フレームワークに基づくモデル非依存の証明書を提案する。
このアプローチがさまざまなモデル、データセット、タスクに対して有効であることを示します。
論文 参考訳(メタデータ) (2020-08-29T10:09:02Z) - Adversarial Attack on Hierarchical Graph Pooling Neural Networks [14.72310134429243]
グラフ分類タスクにおけるグラフニューラルネットワーク(GNN)の堅牢性について検討する。
本稿では,グラフ分類タスクに対する逆攻撃フレームワークを提案する。
我々の知る限りでは、これは階層的なGNNベースのグラフ分類モデルに対する敵攻撃に関する最初の研究である。
論文 参考訳(メタデータ) (2020-05-23T16:19:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。