論文の概要: Do humans and machines have the same eyes? Human-machine perceptual
differences on image classification
- arxiv url: http://arxiv.org/abs/2304.08733v1
- Date: Tue, 18 Apr 2023 05:09:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 16:04:21.019107
- Title: Do humans and machines have the same eyes? Human-machine perceptual
differences on image classification
- Title(参考訳): 人間と機械は同じ目を持っていますか。
画像分類における人間と機械の知覚的差異
- Authors: Minghao Liu, Jiaheng Wei, Yang Liu, James Davis
- Abstract要約: 訓練されたコンピュータビジョンモデルは、トレーニングラベルから学んだ人間の振る舞いを模倣することにより、視覚課題を解決すると仮定される。
本研究はまず,2つの情報源からの誤りの統計的分布を定量化し,解析する。
我々は、人間や機械を単独で上回るポストホックな人間と機械のコラボレーションを実証的に実証する。
- 参考スコア(独自算出の注目度): 8.474744196892722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trained computer vision models are assumed to solve vision tasks by imitating
human behavior learned from training labels. Most efforts in recent vision
research focus on measuring the model task performance using standardized
benchmarks. Limited work has been done to understand the perceptual difference
between humans and machines. To fill this gap, our study first quantifies and
analyzes the statistical distributions of mistakes from the two sources. We
then explore human vs. machine expertise after ranking tasks by difficulty
levels. Even when humans and machines have similar overall accuracies, the
distribution of answers may vary. Leveraging the perceptual difference between
humans and machines, we empirically demonstrate a post-hoc human-machine
collaboration that outperforms humans or machines alone.
- Abstract(参考訳): 訓練されたコンピュータビジョンモデルは、トレーニングラベルから学んだ人間の行動を模倣してビジョンタスクを解決すると仮定される。
最近のビジョン研究におけるほとんどの取り組みは、標準化されたベンチマークを用いてモデルタスクのパフォーマンスを測定することに焦点を当てている。
人間と機械の知覚的違いを理解するために、限られた作業がなされている。
このギャップを埋めるために、我々はまず2つの情報源から誤りの統計的分布を定量化し分析する。
そして、課題を難易度でランク付けした後、人間と機械の専門知識を探る。
人間や機械が全体的に類似している場合でも、答えの分布は様々である。
人間と機械の知覚的な違いを利用して、人間や機械よりも優れたポストホックな人間と機械のコラボレーションを実証する。
関連論文リスト
- Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Vision-Based Manipulators Need to Also See from Their Hands [58.398637422321976]
本研究では,視覚的視点の選択が,生のセンサ観測から身体操作の文脈における学習と一般化にどう影響するかを検討する。
手中心(目の)視点は可観測性を低下させるが、トレーニング効率とアウト・オブ・ディストリビューションの一般化を一貫して改善する。
論文 参考訳(メタデータ) (2022-03-15T18:46:18Z) - Comparing Visual Reasoning in Humans and AI [66.89451296340809]
人間の行動や社会的相互作用を含む複雑なシーンのデータセットを作成しました。
ai/ヒューマンのシーン記述と、各シーンの他の5つの人間記述の地上真実との類似度を定量的に測定した。
結果は、機械/人間の合意シーンの説明は、私たちの複雑なシーンの人間/人間の合意よりもはるかに低いことを示しています。
論文 参考訳(メタデータ) (2021-04-29T04:44:13Z) - Dissonance Between Human and Machine Understanding [16.32018730049208]
本稿では,人間と機械の理解との不協和を解明し,定量化する大規模クラウドソーシング研究を行う。
私たちの発見は、人工知能の分野における長期的な目標は、人間のように学習し推論できる機械を作ることであると考え、人間と機械のコラボレーションに重要な意味を持つ。
論文 参考訳(メタデータ) (2021-01-18T21:45:35Z) - Human vs. supervised machine learning: Who learns patterns faster? [0.0]
本研究は,訓練データに制限がある場合に,人間と機械の学習性能がどう違うかを示す。
我々は、44人の人間と3つの異なる機械学習アルゴリズムがラベル付きトレーニングデータのパターンを識別し、発見したパターンに従ってインスタンスをラベル付けする実験を設計した。
論文 参考訳(メタデータ) (2020-11-30T13:39:26Z) - A robot that counts like a child: a developmental model of counting and
pointing [69.26619423111092]
実物を数えることができる新しい神経ロボティクスモデルを導入する。
このモデルにより,エンボディメントと数値認識の相互作用を調べることができる。
トレーニングされたモデルは、アイテムのセットをカウントすることができ、同時にそれらを指し示します。
論文 参考訳(メタデータ) (2020-08-05T21:06:27Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z) - Joint Inference of States, Robot Knowledge, and Human (False-)Beliefs [90.20235972293801]
本稿では,人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)の認知能力が,ロボットとの相互作用にどのように影響するかを理解するために,対象状態,ロボット知識,人間(時間的)の認知能力の表現にグラフィカルモデルを採用することを提案する。
推論アルゴリズムは、複数のビューにまたがる全てのロボットから個別のpgを融合し、単一のビューから発生したエラーを克服するより効果的な推論能力を得る。
論文 参考訳(メタデータ) (2020-04-25T23:02:04Z) - Five Points to Check when Comparing Visual Perception in Humans and
Machines [26.761191892051]
情報処理を人間と機械で比較する作業が増えている。
本稿では,実験の設計,実施,解釈の方法を提案する。
3つのケーススタディを通じて、これらのアイデアを実証し、適用する。
論文 参考訳(メタデータ) (2020-04-20T16:05:36Z) - Robot self/other distinction: active inference meets neural networks
learning in a mirror [9.398766540452632]
ロボットがミラー上で非出現自認を行うことを可能にするアルゴリズムを提案する。
このアルゴリズムは、脳内の知覚と行動の理論モデルであるアクティブ推論とニューラルネットワーク学習を組み合わせる。
ヒューマノイドロボットの実験結果から,初期条件の異なるアルゴリズムの信頼性が示された。
論文 参考訳(メタデータ) (2020-04-11T19:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。