論文の概要: Do humans and machines have the same eyes? Human-machine perceptual
differences on image classification
- arxiv url: http://arxiv.org/abs/2304.08733v1
- Date: Tue, 18 Apr 2023 05:09:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 16:04:21.019107
- Title: Do humans and machines have the same eyes? Human-machine perceptual
differences on image classification
- Title(参考訳): 人間と機械は同じ目を持っていますか。
画像分類における人間と機械の知覚的差異
- Authors: Minghao Liu, Jiaheng Wei, Yang Liu, James Davis
- Abstract要約: 訓練されたコンピュータビジョンモデルは、トレーニングラベルから学んだ人間の振る舞いを模倣することにより、視覚課題を解決すると仮定される。
本研究はまず,2つの情報源からの誤りの統計的分布を定量化し,解析する。
我々は、人間や機械を単独で上回るポストホックな人間と機械のコラボレーションを実証的に実証する。
- 参考スコア(独自算出の注目度): 8.474744196892722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trained computer vision models are assumed to solve vision tasks by imitating
human behavior learned from training labels. Most efforts in recent vision
research focus on measuring the model task performance using standardized
benchmarks. Limited work has been done to understand the perceptual difference
between humans and machines. To fill this gap, our study first quantifies and
analyzes the statistical distributions of mistakes from the two sources. We
then explore human vs. machine expertise after ranking tasks by difficulty
levels. Even when humans and machines have similar overall accuracies, the
distribution of answers may vary. Leveraging the perceptual difference between
humans and machines, we empirically demonstrate a post-hoc human-machine
collaboration that outperforms humans or machines alone.
- Abstract(参考訳): 訓練されたコンピュータビジョンモデルは、トレーニングラベルから学んだ人間の行動を模倣してビジョンタスクを解決すると仮定される。
最近のビジョン研究におけるほとんどの取り組みは、標準化されたベンチマークを用いてモデルタスクのパフォーマンスを測定することに焦点を当てている。
人間と機械の知覚的違いを理解するために、限られた作業がなされている。
このギャップを埋めるために、我々はまず2つの情報源から誤りの統計的分布を定量化し分析する。
そして、課題を難易度でランク付けした後、人間と機械の専門知識を探る。
人間や機械が全体的に類似している場合でも、答えの分布は様々である。
人間と機械の知覚的な違いを利用して、人間や機械よりも優れたポストホックな人間と機械のコラボレーションを実証する。
関連論文リスト
- Unexploited Information Value in Human-AI Collaboration [23.353778024330165]
ヒューマンAIチームのパフォーマンスを改善する方法は、各エージェントがどのような情報や戦略を採用しているかを知らなければ、しばしば明確ではない。
本稿では,人間とAIの協調関係を分析するための統計的決定理論に基づくモデルを提案する。
論文 参考訳(メタデータ) (2024-11-03T01:34:45Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
我々は、AIが設計、開発、デプロイされる状況とは切り離せない社会技術システムとして理解する必要があると論じる。
我々は、人間の認知バイアスがAIフェアネスの概観の中核となる急進的な新しい方法論に従うことで、この問題に対処する。
我々は、人間にAIバイアスを正当化する新しいマッピングを導入し、関連する公正度と相互依存を検出する。
論文 参考訳(メタデータ) (2024-07-30T21:34:04Z) - Human-Modeling in Sequential Decision-Making: An Analysis through the Lens of Human-Aware AI [20.21053807133341]
私たちは、人間を意識したAIシステムを構成するものの説明を提供しようとしています。
人間を意識したAIはデザイン指向のパラダイムであり、人間と対話するかもしれないモデリングの必要性に焦点を当てている。
論文 参考訳(メタデータ) (2024-05-13T14:17:52Z) - Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images [66.20578637253831]
人工知能(AI)技術の進歩が偽写真を生み出すのではないかという懸念が高まっている。
本研究の目的は、最先端のAI生成視覚コンテンツを識別するためのエージェントを包括的に評価することである。
論文 参考訳(メタデータ) (2023-04-25T17:51:59Z) - Human-AI Collaboration: The Effect of AI Delegation on Human Task
Performance and Task Satisfaction [0.0]
タスク性能とタスク満足度はAIデリゲートによって向上することを示す。
我々は、これらの改善の基盤となるメカニズムとして、人間による自己効力の増大を見いだした。
我々の発見は、AIモデルがより多くの管理責任を引き継ぐことが、人間とAIのコラボレーションの効果的な形態であることを示す最初の証拠を提供する。
論文 参考訳(メタデータ) (2023-03-16T11:02:46Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - Dissonance Between Human and Machine Understanding [16.32018730049208]
本稿では,人間と機械の理解との不協和を解明し,定量化する大規模クラウドソーシング研究を行う。
私たちの発見は、人工知能の分野における長期的な目標は、人間のように学習し推論できる機械を作ることであると考え、人間と機械のコラボレーションに重要な意味を持つ。
論文 参考訳(メタデータ) (2021-01-18T21:45:35Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
AIシステムは人間中心の方法でトレーニングされ、チームのパフォーマンスに直接最適化されるべきである、と私たちは主張する。
我々は,AIレコメンデーションを受け入れるか,あるいはタスク自体を解決するかを選択する,特定のタイプのAIチームを提案する。
実世界の高精度データセット上での線形モデルと非線形モデルによる実験は、AIが最も正確であることは、最高のチームパフォーマンスに繋がらないことを示している。
論文 参考訳(メタデータ) (2020-04-27T19:06:28Z) - Joint Inference of States, Robot Knowledge, and Human (False-)Beliefs [90.20235972293801]
本稿では,人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)の認知能力が,ロボットとの相互作用にどのように影響するかを理解するために,対象状態,ロボット知識,人間(時間的)の認知能力の表現にグラフィカルモデルを採用することを提案する。
推論アルゴリズムは、複数のビューにまたがる全てのロボットから個別のpgを融合し、単一のビューから発生したエラーを克服するより効果的な推論能力を得る。
論文 参考訳(メタデータ) (2020-04-25T23:02:04Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。