論文の概要: W-MAE: Pre-trained weather model with masked autoencoder for
multi-variable weather forecasting
- arxiv url: http://arxiv.org/abs/2304.08754v1
- Date: Tue, 18 Apr 2023 06:25:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 15:53:44.032088
- Title: W-MAE: Pre-trained weather model with masked autoencoder for
multi-variable weather forecasting
- Title(参考訳): w-mae:マルチ変数天気予報のためのマスク付きオートエンコーダによる事前学習型気象モデル
- Authors: Xin Man, Chenghong Zhang, Changyu Li, Jie Shao
- Abstract要約: マルチ時間気象予報のためのMasked AutoEncoderプリトレーニングによる気象モデルを提案する。
W-MAEは、気象変数内の空間的相関を再構成するために、自己教師付きで事前訓練される。
我々は、気象変数の将来状態を予測するために、事前訓練されたW-MAEを微調整し、気象データに存在する時間的依存関係をモデル化する。
- 参考スコア(独自算出の注目度): 26.267827908806215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weather forecasting is a long-standing computational challenge with direct
societal and economic impacts. This task involves a large amount of continuous
data collection and exhibits rich spatiotemporal dependencies over long
periods, making it highly suitable for deep learning models. In this paper, we
apply pre-training techniques to weather forecasting and propose W-MAE, a
Weather model with Masked AutoEncoder pre-training for multi-variable weather
forecasting. W-MAE is pre-trained in a self-supervised manner to reconstruct
spatial correlations within meteorological variables. On the temporal scale, we
fine-tune the pre-trained W-MAE to predict the future states of meteorological
variables, thereby modeling the temporal dependencies present in weather data.
We pre-train W-MAE using the fifth-generation ECMWF Reanalysis (ERA5) data,
with samples selected every six hours and using only two years of data. Under
the same training data conditions, we compare W-MAE with FourCastNet, and W-MAE
outperforms FourCastNet in precipitation forecasting. In the setting where the
training data is far less than that of FourCastNet, our model still performs
much better in precipitation prediction (0.80 vs. 0.98). Additionally,
experiments show that our model has a stable and significant advantage in
short-to-medium-range forecasting (i.e., forecasting time ranges from 6 hours
to one week), and the longer the prediction time, the more evident the
performance advantage of W-MAE, further proving its robustness.
- Abstract(参考訳): 天気予報は社会と経済の直接的な影響を伴う長年の計算課題である。
このタスクは大量の連続データ収集を伴い、長期間にわたって豊富な時空間依存性を示し、ディープラーニングモデルに非常に適しています。
本稿では,気象予報に事前学習手法を適用し,多変量気象予報のためのMasked AutoEncoderを用いた気象モデルW-MAEを提案する。
W-MAEは、気象変数内の空間的相関を再構成するために、自己教師付きで事前訓練される。
時間スケールでは、事前訓練したW-MAEを微調整し、気象変数の将来の状態を予測し、気象データに存在する時間依存性をモデル化する。
我々は,第5世代ECMWFリアナリシス(ERA5)データを用いて,サンプルを6時間毎に選択し,わずか2年のデータを用いて,W-MAEを事前訓練した。
同じトレーニングデータ条件下では、降水予測においてW-MAEとFourCastNetを比較し、W-MAEはFourCastNetを上回っている。
トレーニングデータがfourcastnetよりはるかに少ない環境では, 降水予測(0.80 対 0.98)では, モデルの方がずっと良好である。
さらに,本モデルが6時間から1週間の近距離予測において安定かつ有意な優位性を示すとともに,予測時間が長ければ長いほど,W-MAEの性能上の優位性が向上し,ロバスト性がさらに証明された。
関連論文リスト
- Masked Autoregressive Model for Weather Forecasting [7.960598061739508]
Masked Autoregressive Model for Weather Forecasting (MAM4WF)
本研究では,MAM4WF(Masked Autoregressive Model for Weather Forecasting)を提案する。
このモデルは、トレーニング中に入力データの一部をマスクするマスク付きモデリングを利用する。
気象・気象予報・映像フレーム予測データを用いてMAM4WFを評価し,5つのテストデータセットにおいて優れた性能を示した。
論文 参考訳(メタデータ) (2024-09-30T09:17:04Z) - A Benchmark for AI-based Weather Data Assimilation [10.100157158477145]
本研究では,シミュレーション観測,実世界観測,ERA5再解析により構築したベンチマークであるDABenchを提案する。
実験の結果,4DVarFormerV2とSformerを統合したエンド・ツー・エンドの天気予報システムが実世界の観測を同化できることが確認された。
提案されているDABenchは、AIベースのDA、AIベースの天気予報、および関連するドメインの研究を大幅に前進させる。
論文 参考訳(メタデータ) (2024-08-21T08:50:19Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
激しい対流嵐は最も危険な気象現象であり、正確な予測は影響を緩和する。
最近リリースされたAIベースの天気モデルスイートは、中距離の予測を数秒で生成する。
本稿では,再解析とECMWFの運用数値天気予報モデルISSに対して,対流パラメータを対象とした3つのAIモデルの予測能力を評価する。
論文 参考訳(メタデータ) (2024-06-13T07:46:03Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - EWMoE: An effective model for global weather forecasting with mixture-of-experts [6.695845790670147]
本研究では,地球規模の天気予報に有効なモデルであるEWMoEを提案する。
本モデルは,3次元絶対位置埋め込み,Mixture-of-Experts層,および2つの特定の損失関数の3つの重要な要素を組み込んで予測精度を向上させる。
論文 参考訳(メタデータ) (2024-05-09T16:42:13Z) - An ensemble of data-driven weather prediction models for operational sub-seasonal forecasting [0.08106028186803123]
運用可能なマルチモデルアンサンブル天気予報システムを提案する。
データ駆動型天気予報モデルを用いたマルチモデルアンサンブル手法により、最先端のサブシーズン・シーズン・シーズン予測を実現することができる。
論文 参考訳(メタデータ) (2024-03-22T20:01:53Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。