論文の概要: Large-scale Dynamic Network Representation via Tensor Ring Decomposition
- arxiv url: http://arxiv.org/abs/2304.08798v1
- Date: Tue, 18 Apr 2023 08:02:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 15:45:50.985947
- Title: Large-scale Dynamic Network Representation via Tensor Ring Decomposition
- Title(参考訳): テンソル環分解による大規模動的ネットワーク表現
- Authors: Qu Wang
- Abstract要約: 大規模動的ネットワーク(LDN)はインターネット時代においてますます重要になっている。
本研究では、LDNの効率的な表現学習のためのRing(TR)分解に基づくモデルを提案する。
2つの実LDNに関する実験的研究により,提案手法が既存モデルよりも精度が高いことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large-scale Dynamic Networks (LDNs) are becoming increasingly important in
the Internet age, yet the dynamic nature of these networks captures the
evolution of the network structure and how edge weights change over time,
posing unique challenges for data analysis and modeling. A Latent Factorization
of Tensors (LFT) model facilitates efficient representation learning for a LDN.
But the existing LFT models are almost based on Canonical Polyadic
Factorization (CPF). Therefore, this work proposes a model based on Tensor Ring
(TR) decomposition for efficient representation learning for a LDN.
Specifically, we incorporate the principle of single latent factor-dependent,
non-negative, and multiplicative update (SLF-NMU) into the TR decomposition
model, and analyze the particular bias form of TR decomposition. Experimental
studies on two real LDNs demonstrate that the propose method achieves higher
accuracy than existing models.
- Abstract(参考訳): 大規模動的ネットワーク(LDN)はインターネット時代においてますます重要になっているが、これらのネットワークの動的な性質はネットワーク構造の進化を捉え、エッジウェイトが時間とともにどのように変化するかを捉え、データ分析とモデリングに固有の課題を提起している。
テンソルの潜在因子化(LFT)モデルは,LDNの効率的な表現学習を容易にする。
しかし、既存のLFTモデルはカノニカルなポリアディック因子化(CPF)に基づいている。
そこで本研究では,LDNの効率的な表現学習のためのテンソルリング分解に基づくモデルを提案する。
具体的には,単一潜在因子依存,非負および乗法的更新(slf-nmu)の原理をtr分解モデルに取り入れ,tr分解の特定のバイアス形式を分析する。
2つの実LDNに関する実験的研究により,提案手法が既存モデルよりも精度が高いことを示す。
関連論文リスト
- Efficient Frequency Selective Surface Analysis via End-to-End Model-Based Learning [2.66269503676104]
本稿では、高次元周波数選択面(FSS)の効率的な電磁解析のための革新的なエンドツーエンドモデルに基づくディープラーニング手法を提案する。
大規模なデータセットを必要とする従来のデータ駆動手法とは異なり、このアプローチは等価回路モデルからの物理的な洞察とディープラーニング技術を組み合わせて、モデルの複雑さを著しく低減し、予測精度を高める。
論文 参考訳(メタデータ) (2024-10-22T07:27:20Z) - Fuzzy Recurrent Stochastic Configuration Networks for Industrial Data Analytics [3.8719670789415925]
本稿では,ファジィリカレント構成ネットワーク(F-RSCN)と呼ばれる新しいニューロファジィモデルを提案する。
提案したF-RSCNは,複数の貯留層によって構成され,各貯留層は高木・スゲノ・カン(TSK)ファジィ則に関連付けられている。
TSKファジィ推論システムをRCCNに統合することにより、F-RSCNは強力なファジィ推論能力を有し、学習と一般化の両面での音響性能を実現することができる。
論文 参考訳(メタデータ) (2024-07-06T01:40:31Z) - Recurrent neural networks and transfer learning for elasto-plasticity in
woven composites [0.0]
本稿では, 織物のメソスケールシミュレーションの代用として, リカレントニューラルネットワーク(RNN)モデルを提案する。
平均場モデルは、弾塑性挙動を表す包括的データセットを生成する。
シミュレーションでは、任意の6次元ひずみヒストリーを用いて、ランダムウォーキング時の応力を原課題として、循環荷重条件を目標課題として予測する。
論文 参考訳(メタデータ) (2023-11-22T14:47:54Z) - A Momentum-Incorporated Non-Negative Latent Factorization of Tensors
Model for Dynamic Network Representation [0.0]
大規模動的ネットワーク (LDN) は、多くのビッグデータ関連アプリケーションにおけるデータソースである。
テンソル(LFT)モデルの潜在因子化は、この時間パターンを効率的に抽出する。
勾配降下(SGD)解法に基づくLFTモデルは、トレーニングスキームによって制限されることが多く、尾収束が弱い。
本稿では,運動量付きSGDに基づく非線形LFTモデル(MNNL)を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:30:53Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
本稿では,線形近似ニューラルネットワーク(LANN)を提案する。
ニューラルネットワークのトレーニングプロセスを実験的に検討し、オーバーフィッティングを検出する。
我々は、$L1$と$L2$正規化がモデルの複雑さの増加を抑制することを発見した。
論文 参考訳(メタデータ) (2020-06-16T07:38:06Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
因果モデリングは機械学習(ML)における多くの課題に対する潜在的な解決策として認識されている。
深層ニューラルネットワーク(DNN)モデルによって学習された特徴表現を分解するために、最近提案された対実的アプローチが依然として使われている方法について説明する。
論文 参考訳(メタデータ) (2020-04-20T17:37:36Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。