Boosting entanglement growth of many-body localization by superpositions
of disorder
- URL: http://arxiv.org/abs/2304.08849v1
- Date: Tue, 18 Apr 2023 09:31:44 GMT
- Title: Boosting entanglement growth of many-body localization by superpositions
of disorder
- Authors: Jhen-Dong Lin and Yueh-Nan Chen
- Abstract summary: Many-body localization can occur when strong disorders prevent an interacting system from thermalization.
Previous works have utilized an algorithm in which different disorder profiles are mapped into a quantum ancilla.
We modify this algorithm by performing a measurement on the ancilla.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many-body localization (MBL) can occur when strong disorders prevent an
interacting system from thermalization. To study the dynamics of such systems,
it is typically necessary to perform an ensemble average over many different
disorder configurations. Previous works have utilized an algorithm in which
different disorder profiles are mapped into a quantum ancilla. By preparing the
ancilla in a quantum superposition state, quantum parallelism can be harnessed
to obtain the ensemble average in a single computation run. In this work, we
modify this algorithm by performing a measurement on the ancilla. This enables
the determination of conditional dynamics not only by the ensemble average but
also by the quantum interference effect. Using a phenomenological analysis
based on local integrals of motion, we demonstrate that this protocol can lead
to an enhancement of the dephasing effect and a boost in the entanglement
growth for systems in the deep MBL phase. We also present numerical simulations
of the random XXZ model where this enhancement is also present in a smaller
disorder strength, beyond the deep MBL regime.
Related papers
- Observation of disorder-free localization and efficient disorder averaging on a quantum processor [117.33878347943316]
We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations.
We observe localization without disorder in quantum many-body dynamics in one and two dimensions.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Exploiting many-body localization for scalable variational quantum simulation [0.0]
Variational quantum algorithms have emerged as a promising approach to achieving practical quantum advantages using near-term quantum devices.
Despite their potential, the scalability of these algorithms poses a significant challenge.
We explore the many-body localization (MBL)-thermalization phase transitions within a framework of Floquet-kickd variational quantum circuits.
arXiv Detail & Related papers (2024-04-26T17:40:20Z) - Decoherence Limits the Cost to Simulate an Anharmonic Oscillator [0.0]
We study how decoherence washes out the fine-grained subPlanck structure associated with phase-space quantum interference in a quantum system.
Open quantum dynamics can be more efficiently simulated using a coarse-grained finite-difference numerical integration.
We show that this regression does not have the form of a convex noise model, such as for a depolarizing noise channel.
arXiv Detail & Related papers (2023-07-03T04:49:10Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Digital quantum simulation of non-perturbative dynamics of open systems
with orthogonal polynomials [0.0]
We propose the use of the Time Evolving Density operator with Orthogonal Polynomials Algorithm (TEDOPA) on a quantum computer.
We show that exponential scalings of computational resources can potentially be avoided for time-evolution simulations of the systems considered in this work.
arXiv Detail & Related papers (2022-03-28T11:16:33Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Characterizing many-body localization via exact disorder-averaged
quantum noise [0.0]
Many-body localized (MBL) phases of disordered quantum many-particle systems have a number of unique properties.
We characterize the quantum noise that a disordered spin system exerts on its parts via an influence matrix (IM)
Viewed as a wavefunction in the space of trajectories of an individual spin, the IM exhibits slow scaling of temporal entanglement in the MBL phase.
arXiv Detail & Related papers (2020-12-01T19:01:31Z) - Stark many-body localization on a superconducting quantum processor [10.67740744008533]
We build a quantum device composed of thirty-two superconducting qubits, faithfully reproducing the relaxation dynamics of a non-integrable spin model.
Our results describe the real-time evolution at sizes that surpass what is currently attainable by exact simulations in classical computers.
arXiv Detail & Related papers (2020-11-27T18:37:01Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.