論文の概要: Rank-Based Learning and Local Model Based Evolutionary Algorithm for
High-Dimensional Expensive Multi-Objective Problems
- arxiv url: http://arxiv.org/abs/2304.09444v1
- Date: Wed, 19 Apr 2023 06:25:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 15:18:16.063449
- Title: Rank-Based Learning and Local Model Based Evolutionary Algorithm for
High-Dimensional Expensive Multi-Objective Problems
- Title(参考訳): 高次元多目的問題に対するランクベース学習と局所モデルに基づく進化的アルゴリズム
- Authors: Guodong Chen, Jiu Jimmy Jiao, Xiaoming Xue, Xin Luo and Zhongzheng
Wang
- Abstract要約: 提案アルゴリズムは, ランクベース学習, ハイパーボリュームベース非支配探索, 比較的スパースな対象空間における局所探索の3つの部分からなる。
地熱貯留層熱抽出最適化におけるベンチマーク問題と実世界の応用の実験的結果は,提案アルゴリズムが優れた性能を示すことを示すものである。
- 参考スコア(独自算出の注目度): 2.757222895028845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surrogate-assisted evolutionary algorithms have been widely developed to
solve complex and computationally expensive multi-objective optimization
problems in recent years. However, when dealing with high-dimensional
optimization problems, the performance of these surrogate-assisted
multi-objective evolutionary algorithms deteriorate drastically. In this work,
a novel Classifier-assisted rank-based learning and Local Model based
multi-objective Evolutionary Algorithm (CLMEA) is proposed for high-dimensional
expensive multi-objective optimization problems. The proposed algorithm
consists of three parts: classifier-assisted rank-based learning,
hypervolume-based non-dominated search, and local search in the relatively
sparse objective space. Specifically, a probabilistic neural network is built
as classifier to divide the offspring into a number of ranks. The offspring in
different ranks uses rank-based learning strategy to generate more promising
and informative candidates for real function evaluations. Then, radial basis
function networks are built as surrogates to approximate the objective
functions. After searching non-dominated solutions assisted by the surrogate
model, the candidates with higher hypervolume improvement are selected for real
evaluations. Subsequently, in order to maintain the diversity of solutions, the
most uncertain sample point from the non-dominated solutions measured by the
crowding distance is selected as the guided parent to further infill in the
uncertain region of the front. The experimental results of benchmark problems
and a real-world application on geothermal reservoir heat extraction
optimization demonstrate that the proposed algorithm shows superior performance
compared with the state-of-the-art surrogate-assisted multi-objective
evolutionary algorithms. The source code for this work is available at
https://github.com/JellyChen7/CLMEA.
- Abstract(参考訳): 近年,複雑で計算コストのかかる多目的最適化問題を解くためにサロゲート支援進化アルゴリズムが広く開発されている。
しかし、高次元最適化問題を扱う場合、これらのサロゲート支援多目的進化アルゴリズムの性能は大幅に低下する。
本研究では,高次元高コスト多目的最適化問題に対して,新しい分類器支援のランクベース学習と局所モデルに基づく多目的進化アルゴリズム(CLMEA)を提案する。
提案アルゴリズムは,分類子支援のランクベース学習,ハイパーボリュームベース非支配探索,比較的少ない対象空間での局所探索の3つの部分からなる。
具体的には、確率論的ニューラルネットワークを分類器として構築し、子孫を複数のランクに分割する。
異なる階級の子孫はランクベースの学習戦略を用いて、実機能評価のためのより有望で有意義な候補を生成する。
次に、対象関数を近似する代理として放射基底関数ネットワークを構築する。
サーロゲートモデルに支援された非優位解を探索した後、高体積改善候補を実評価に選定する。
その後、溶液の多様性を維持するため、群集距離で測定した非支配溶液からの最も不確定なサンプルポイントを誘導親として選択し、前線の不確実領域にさらに侵入する。
地熱貯留層熱抽出最適化におけるベンチマーク問題と実世界の応用の実験結果から,提案アルゴリズムは現状のサロゲート支援多目的進化アルゴリズムと比較して優れた性能を示した。
この作業のソースコードはhttps://github.com/jellychen7/clmeaで入手できる。
関連論文リスト
- Large-scale Multi-objective Feature Selection: A Multi-phase Search Space Shrinking Approach [0.27624021966289597]
特徴の選択は、特に高次元データセットにおいて、機械学習において重要なステップである。
本稿では,LMSSSと呼ばれる探索空間の縮小に基づく大規模多目的進化アルゴリズムを提案する。
提案アルゴリズムの有効性は、15の大規模データセットに対する包括的実験によって実証される。
論文 参考訳(メタデータ) (2024-10-13T23:06:10Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
不均衡学習はデータマイニングにおいて基本的な課題であり、各クラスにトレーニングサンプルの不均等な比率が存在する。
オーバーサンプリングは、少数民族のための合成サンプルを生成することによって、不均衡な学習に取り組む効果的な手法である。
我々は,異なるレベルの意思決定を共同で最適化できる自動オーバーサンプリングアルゴリズムであるAutoSMOTEを提案する。
論文 参考訳(メタデータ) (2022-08-26T04:28:01Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - A Federated Data-Driven Evolutionary Algorithm for Expensive
Multi/Many-objective Optimization [11.92436948211501]
本稿では,フェデレートされたデータ駆動型進化的多目的/多目的最適化アルゴリズムを提案する。
複数のクライアントが協調してラジアル・ベーシ関数ネットワークをグローバルなサロゲートとしてトレーニングできるように、サロゲート構築のためのフェデレートラーニングを活用している。
グローバルサロゲートを用いて目的値を近似し、近似された目標値の不確かさレベルを推定するために、中央サーバに新たなフェデレーション獲得関数を提案する。
論文 参考訳(メタデータ) (2021-06-22T22:33:24Z) - An Online Prediction Approach Based on Incremental Support Vector
Machine for Dynamic Multiobjective Optimization [19.336520152294213]
インクリメンタルサポートベクトルマシン(ISVM)に基づく新しい予測アルゴリズムを提案する。
動的多目的最適化問題(DMOP)の解決をオンライン学習プロセスとして扱う。
提案アルゴリズムは動的多目的最適化問題に効果的に取り組むことができる。
論文 参考訳(メタデータ) (2021-02-24T08:51:23Z) - Manifold Interpolation for Large-Scale Multi-Objective Optimization via
Generative Adversarial Networks [12.18471608552718]
大規模多目的最適化問題(LSMOP)は、数百から数千の決定変数と複数の矛盾する目的を含むことを特徴とする。
これまでの研究では、これらの最適解は低次元空間の多様体構造に一様に分布していることが示されている。
本研究では, 生成逆数ネットワーク(GAN)に基づく多様体フレームワークを提案し, 多様体を学習し, 高品質な解を生成する。
論文 参考訳(メタデータ) (2021-01-08T09:38:38Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
我々は、$tildeO(L5/6 T2/3)$ regretで最適な複雑性に適応するメタアルゴリズムを提案する。
また、メタアルゴリズムは、インスタンス依存の後悔境界を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-11-19T10:00:54Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
一段階の物体検出器は、分類損失と局所化損失を同時に最適化することによって訓練される。
前者は、多数のアンカーのため、非常に前景と後方のアンカーの不均衡に悩まされる。
本稿では,一段検知器の分類タスクをランキングタスクに置き換える新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-08-17T13:22:01Z) - BOP-Elites, a Bayesian Optimisation algorithm for Quality-Diversity
search [0.0]
本稿では,エリートアルゴリズム(BOP-Elites)のベイズ最適化を提案する。
機能領域のユーザ定義領域を‘ニッチ’として考えることで、ニッチ毎に最適なソリューションを見つけることが私たちのタスクになります。
得られたアルゴリズムは、特徴空間におけるニッチに属する探索空間の部分を特定し、ニッチごとに最適な解を見つけるのに非常に効果的である。
論文 参考訳(メタデータ) (2020-05-08T23:49:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。