論文の概要: Learnable Evolutionary Multi-Objective Combinatorial Optimization via Sequence-to-Sequence Model
- arxiv url: http://arxiv.org/abs/2412.06140v1
- Date: Mon, 09 Dec 2024 01:46:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:57:11.921288
- Title: Learnable Evolutionary Multi-Objective Combinatorial Optimization via Sequence-to-Sequence Model
- Title(参考訳): シークエンス・ツー・シークエンスモデルによる進化的多目的組合せ最適化
- Authors: Jiaxiang Huang, Licheng Jiao,
- Abstract要約: SeqMOは、シークエンス・ツー・シークエンス・モデルと進化的アルゴリズムを統合する学習可能な多目的最適化手法である。
提案手法は,Pareto面への対物値距離に基づく近似解集合を分割し,対象空間における対物ベクトル角を最小化することにより,解間の写像関係を確立する。
多目的旅行セールスマン問題と多目的配置問題の実験により,アルゴリズムの有効性が検証された。
- 参考スコア(独自算出の注目度): 43.53359509358102
- License:
- Abstract: Recent advances in learnable evolutionary algorithms have demonstrated the importance of leveraging population distribution information and historical evolutionary trajectories. While significant progress has been made in continuous optimization domains, combinatorial optimization problems remain challenging due to their discrete nature and complex solution spaces. To address this gap, we propose SeqMO, a novel learnable multi-objective combinatorial optimization method that integrates sequence-to-sequence models with evolutionary algorithms. Our approach divides approximate Pareto solution sets based on their objective values' distance to the Pareto front, and establishes mapping relationships between solutions by minimizing objective vector angles in the target space. This mapping creates structured training data for pointer networks, which learns to predict promising solution trajectories in the discrete search space. The trained model then guides the evolutionary process by generating new candidate solutions while maintaining population diversity. Experiments on the multi-objective travel salesman problem and the multi-objective quadratic assignment problem verify the effectiveness of the algorithm. Our code is available at: \href{https://github.com/jiaxianghuang/SeqMO}{https://github.com/jiaxianghuang/SeqMO}.
- Abstract(参考訳): 学習可能な進化アルゴリズムの最近の進歩は、人口分布情報と歴史的進化軌道を活用することの重要性を証明している。
連続最適化領域では大きな進歩があったが、その離散性や複雑な解空間のため、組合せ最適化の問題はまだ困難なままである。
このギャップに対処するために,シークエンス・ツー・シークエンス・モデルと進化的アルゴリズムを統合する新しい学習可能な多目的組合せ最適化法であるSeqMOを提案する。
提案手法は, 目的値とパレートフロントの距離に基づいて近似されたパレート解集合を分割し, 対象空間における対象ベクトル角を最小化することにより, 解間の写像関係を確立する。
このマッピングは、ポインタネットワークのための構造化されたトレーニングデータを生成し、離散探索空間における有望な解軌跡を予測することを学習する。
訓練されたモデルは、人口の多様性を維持しながら、新しい候補解を生成することによって進化過程を導く。
多目的旅行セールスマン問題と多目的2次割り当て問題に関する実験は、アルゴリズムの有効性を検証する。
我々のコードは以下の通りである。 \href{https://github.com/jiaxianghuang/SeqMO}{https://github.com/jiaxianghuang/SeqMO}。
関連論文リスト
- DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
我々は,制約付き多目的最適化問題に対する進化探索を強化するために,大規模言語モデル(LLM)を用いる。
私たちの目標は、進化の集団の収束を早めることです。
論文 参考訳(メタデータ) (2024-05-09T13:44:04Z) - Rank-Based Learning and Local Model Based Evolutionary Algorithm for High-Dimensional Expensive Multi-Objective Problems [1.0499611180329806]
提案アルゴリズムは, ランクベース学習, ハイパーボリュームベース非支配探索, 比較的スパースな対象空間における局所探索の3つの部分からなる。
地熱貯留層熱抽出最適化におけるベンチマーク問題と実世界の応用の実験的結果は,提案アルゴリズムが優れた性能を示すことを示すものである。
論文 参考訳(メタデータ) (2023-04-19T06:25:04Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - An Online Prediction Approach Based on Incremental Support Vector
Machine for Dynamic Multiobjective Optimization [19.336520152294213]
インクリメンタルサポートベクトルマシン(ISVM)に基づく新しい予測アルゴリズムを提案する。
動的多目的最適化問題(DMOP)の解決をオンライン学習プロセスとして扱う。
提案アルゴリズムは動的多目的最適化問題に効果的に取り組むことができる。
論文 参考訳(メタデータ) (2021-02-24T08:51:23Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
我々は、容易で、拡張性があり、堅牢な進化的欲求アルゴリズム(AdaLead)を開発した。
AdaLeadは、様々な生物学的に動機づけられたシーケンスデザインの課題において、アートアプローチのより複雑な状態を克服する、驚くほど強力なベンチマークである。
論文 参考訳(メタデータ) (2020-10-05T16:40:38Z) - Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification [0.0]
本稿では,二項制約を持つブラックボックス多目的最適化問題に対する適応最適化アルゴリズムを提案する。
本手法は確率的回帰モデルと分類モデルに基づいており,最適化目標のサロゲートとして機能する。
また,予想される超体積計算を高速化するために,新しい楕円形トランケーション法を提案する。
論文 参考訳(メタデータ) (2020-08-27T09:15:02Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。