論文の概要: The Future of Learning: Large Language Models through the Lens of Students
- arxiv url: http://arxiv.org/abs/2407.12723v1
- Date: Wed, 17 Jul 2024 16:40:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 16:26:03.937570
- Title: The Future of Learning: Large Language Models through the Lens of Students
- Title(参考訳): 学習の未来:学生のレンズを通しての大規模言語モデル
- Authors: He Zhang, Jingyi Xie, Chuhao Wu, Jie Cai, ChanMin Kim, John M. Carroll,
- Abstract要約: 学生はChatGPTの効率を学習と情報探索に活用するというジレンマに悩まされる。
学生はChatGPTを従来のAIよりも「人間的」だと考えている。
- 参考スコア(独自算出の注目度): 20.64319102112755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large-Scale Language Models (LLMs) continue to evolve, they demonstrate significant enhancements in performance and an expansion of functionalities, impacting various domains, including education. In this study, we conducted interviews with 14 students to explore their everyday interactions with ChatGPT. Our preliminary findings reveal that students grapple with the dilemma of utilizing ChatGPT's efficiency for learning and information seeking, while simultaneously experiencing a crisis of trust and ethical concerns regarding the outcomes and broader impacts of ChatGPT. The students perceive ChatGPT as being more "human-like" compared to traditional AI. This dilemma, characterized by mixed emotions, inconsistent behaviors, and an overall positive attitude towards ChatGPT, underscores its potential for beneficial applications in education and learning. However, we argue that despite its human-like qualities, the advanced capabilities of such intelligence might lead to adverse consequences. Therefore, it's imperative to approach its application cautiously and strive to mitigate potential harms in future developments.
- Abstract(参考訳): 大規模言語モデル(LLM)が進化を続けるにつれて、パフォーマンスの大幅な向上と機能拡張が示され、教育を含む様々な領域に影響を及ぼす。
そこで本研究では14名の学生を対象にChatGPTとの日々の交流について調査を行った。
予備的な知見は,ChatGPTの効率を学習や情報探索に活用するジレンマに対処すると同時に,ChatGPTの成果と幅広い影響に対する信頼と倫理的懸念の危機を経験することである。
学生たちはChatGPTを従来のAIよりも「人間らしい」と認識している。
このジレンマは、混ざった感情、一貫性のない行動、およびChatGPTに対する全体的な肯定的な態度によって特徴づけられ、教育と学習における有益な応用の可能性を強調している。
しかし、人間のような性質にもかかわらず、そのような知能の高度な能力は有害な結果をもたらすかもしれないと我々は論じる。
したがって、そのアプリケーションに慎重にアプローチし、将来の開発における潜在的な害を軽減するために努力することが不可欠である。
関連論文リスト
- ChatGPT in Research and Education: Exploring Benefits and Threats [1.9466452723529557]
ChatGPTはOpenAIが開発した強力な言語モデルである。
パーソナライズされたフィードバックを提供し、アクセシビリティを高め、対話的な会話を可能にし、授業の準備と評価を支援し、複雑な科目を教えるための新しい方法を導入する。
ChatGPTは従来の教育や研究システムにも挑戦している。
これらの課題には、オンライン試験の不正行為のリスク、学術的完全性を損なう可能性のある人間のようなテキストの生成、AIによって生成された情報の信頼性を評価することの難しさなどが含まれる。
論文 参考訳(メタデータ) (2024-11-05T05:29:00Z) - Investigation of the effectiveness of applying ChatGPT in Dialogic Teaching Using Electroencephalography [6.34494999013996]
大規模言語モデル(LLM)には、知識を解釈し、質問に答え、文脈を考える能力がある。
この研究は、34人の大学生を参加者として募集し、ランダムに2つのグループに分けられた。
実験群はChatGPTを用いて対話型指導を行い,コントロール群は人間教師と対話した。
論文 参考訳(メタデータ) (2024-03-25T12:23:12Z) - Exploring the Impact of ChatGPT on Student Interactions in
Computer-Supported Collaborative Learning [1.5961625979922607]
本稿では,コンピュータ支援型協調学習環境におけるChatGPTの適用性について検討する。
統計的分析を用いて,非同期グループブレインストーミングセッションにおける学生のインタラクションの変化を,ChatGPTを即時質問応答エージェントとして導入することで検証する。
論文 参考訳(メタデータ) (2024-03-11T18:18:18Z) - Economic and Financial Learning with Artificial Intelligence: A
Mixed-Methods Study on ChatGPT [0.05152756192881158]
本研究では,ChatGPTの教育ツールとしての可能性を探り,ユーザ認知,経験,学習成果に着目した。
この研究は、ChatGPTの有効性を裏付ける露光後の認知の顕著な変化を明らかにした。
しかし、効果の促進や情報の正確性といった課題が重要課題として浮上した。
論文 参考訳(メタデータ) (2024-02-23T11:55:43Z) - Exploring User Perspectives on ChatGPT: Applications, Perceptions, and
Implications for AI-Integrated Education [40.38809129759498]
ChatGPTは、高等教育、K-12教育、実践的スキルトレーニングの領域でよく使われている。
一方で、学生の自己効力感と学習意欲を増幅できる変革的ツールであると考えるユーザもいる。
一方,利用者の理解度は高い。
論文 参考訳(メタデータ) (2023-05-22T15:13:14Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - Consistency Analysis of ChatGPT [65.268245109828]
本稿では,ChatGPTとGPT-4の論理的一貫した行動に対する信頼性について検討する。
その結果,両モデルとも言語理解能力と推論能力が向上しているように見えるが,論理的に一貫した予測が得られないことが示唆された。
論文 参考訳(メタデータ) (2023-03-11T01:19:01Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
チャットGPTは、人間の質問に対する流動的で高品質な応答を生成できるため、大きな注目を集めている。
そこで我々は,ChatGPTの理解能力を,最も人気のあるGLUEベンチマークで評価し,より詳細な4種類のBERTスタイルのモデルと比較した。
2)ChatGPTは,感情分析や質問応答タスクにおいて,BERTと同等のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-19T12:29:33Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
OpenAIが開発したChatGPTは、大量のデータを使って訓練され、人間の会話をシミュレートしている。
それは、広範囲の人間の問い合わせに効果的に答える能力のために、大きな注目を集めている。
しかし、ChatGPTの失敗の包括的分析は欠落しており、これが本研究の焦点となっている。
論文 参考訳(メタデータ) (2023-02-06T04:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。