論文の概要: Kernel Learning by quantum annealer
- arxiv url: http://arxiv.org/abs/2304.10144v1
- Date: Thu, 20 Apr 2023 08:08:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 14:09:41.170470
- Title: Kernel Learning by quantum annealer
- Title(参考訳): 量子アニーラによるカーネル学習
- Authors: Yasushi Hasegawa, Hiroki Oshiyama and Masayuki Ohzeki
- Abstract要約: 本稿では,Boltzmann マシンのカーネル行列への応用について述べる。
ガウス分布では実現不可能なスペクトル分布を生成可能であることを示す。
- 参考スコア(独自算出の注目度): 0.966840768820136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Boltzmann machine is one of the various applications using quantum
annealer. We propose an application of the Boltzmann machine to the kernel
matrix used in various machine-learning techniques. We focus on the fact that
shift-invariant kernel functions can be expressed in terms of the expected
value of a spectral distribution by the Fourier transformation. Using this
transformation, random Fourier feature (RFF) samples the frequencies and
approximates the kernel function. In this paper, furthermore, we propose a
method to obtain a spectral distribution suitable for the data using a
Boltzmann machine. As a result, we show that the prediction accuracy is
comparable to that of the method using the Gaussian distribution. We also show
that it is possible to create a spectral distribution that could not be
feasible with the Gaussian distribution.
- Abstract(参考訳): ボルツマン機械は量子アニーラを用いた様々な応用の1つである。
本稿では,Boltzmann マシンのカーネル行列への応用について述べる。
我々は、シフト不変なカーネル関数がフーリエ変換によってスペクトル分布の期待値で表現できるという事実に焦点を当てる。
この変換を用いて、ランダムフーリエ特徴(RFF)は周波数をサンプリングし、カーネル関数を近似する。
本稿では,ボルツマンマシンを用いて,データに適したスペクトル分布を求める手法を提案する。
その結果,ガウス分布を用いた手法と予測精度は同等であることが判明した。
また,ガウス分布では実現不可能なスペクトル分布を生成可能であることを示す。
関連論文リスト
- New random projections for isotropic kernels using stable spectral distributions [0.0]
スペクトルカーネル分布を$alpha$-stableランダムベクトルのスケール混合として分解する。
結果は、サポートベクターマシン、カーネルリッジレグレッション、その他のカーネルベースの機械学習技術に広く応用されている。
論文 参考訳(メタデータ) (2024-11-05T03:28:01Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
ランダム機能(RF)は、機械学習においてカーネルメソッドをスケールアップする一般的なテクニックである。
ユークリッド空間と離散入力空間の両方で定義されるRFを改善するための結合を求める。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - Efficient quantum loading of probability distributions through Feynman
propagators [2.56711111236449]
我々は、ハミルトニアンシミュレーションを用いて確率分布のロードのための量子アルゴリズムを、$hat H= Delta + V(x) mathbbI$ という形の1次元ハミルトニアンに対して提示する。
我々は、ファインマンプロパゲーターが解析的に閉じた形式を持つことが知られているポテンシャル$V(x)$を考え、これらのハミルトニアンを用いて確率分布を量子状態にロードする。
論文 参考訳(メタデータ) (2023-11-22T21:41:58Z) - Solving High Frequency and Multi-Scale PDEs with Gaussian Processes [18.190228010565367]
PINNは、しばしば高周波およびマルチスケールのPDEを解決するのに苦労する。
我々はこの問題を解決するためにガウス過程(GP)フレームワークを利用する。
我々はKroneckerの製品特性と多線型代数を用いて計算効率とスケーラビリティを向上する。
論文 参考訳(メタデータ) (2023-11-08T05:26:58Z) - Variational Autoencoder Kernel Interpretation and Selection for
Classification [59.30734371401315]
本研究では,変分オートエンコーダの畳み込みエンコーダによって生成された特徴に基づく確率的分類器のカーネル選択手法を提案する。
提案した実装では、各カーネルに対して各分散が生成されるため、各潜伏変数を最終エンコーダの畳み込み層の単一カーネルに関連付けられた分布からサンプリングした。
サンプル化された潜伏変数で関連する機能を選択することで、カーネルの選択を実行し、非形式的機能とカーネルをフィルタリングすることができる。
論文 参考訳(メタデータ) (2022-09-10T17:22:53Z) - Transformer with Fourier Integral Attentions [18.031977028559282]
本稿では,ドット積カーネルを一般化されたフーリエ積分カーネルに置き換えた新しい変圧器のクラスを提案する。
FourierFormersは従来のドット生成型変換器と比較して精度が向上し、注目ヘッド間の冗長性が低減された。
本稿では,FourierFormersのベースライントランスフォーマーに対する利点を,言語モデリングや画像分類など,様々な実践的応用において実証的に相関付けする。
論文 参考訳(メタデータ) (2022-06-01T03:06:21Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
カーネル平均埋め込みは、その無限次元平均埋め込みによる確率測度を表す。
カーネルが特徴的である場合、カーネルの総和密度を持つ分布は密度が高いことを示す。
有限サンプル設定でそのような分布を最適化するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-18T08:33:45Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Sigma-Delta and Distributed Noise-Shaping Quantization Methods for
Random Fourier Features [73.25551965751603]
我々は、量子化 RFF が基礎となるカーネルの高精度な近似を可能にすることを証明した。
量子化 RFF はさらに圧縮され,メモリ使用量と精度のトレードオフに優れることを示す。
本手法は,この文脈におけるアート量子化手法の他の状態と比較し,いくつかの機械学習タスクにおいて,提案手法の性能を実証的に示す。
論文 参考訳(メタデータ) (2021-06-04T17:24:47Z) - Quantization Algorithms for Random Fourier Features [25.356048456005023]
ランダムフーリエ特徴の方法(rff)も、ガウス核の近似として普及している。
RFFは、ランダムな投影から投影されたデータに特定の非線形変換を適用する。
本稿では,RFFの量子化アルゴリズムの開発に焦点を当てる。
論文 参考訳(メタデータ) (2021-02-25T18:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。