論文の概要: Analyzing FOMC Minutes: Accuracy and Constraints of Language Models
- arxiv url: http://arxiv.org/abs/2304.10164v2
- Date: Mon, 19 Feb 2024 15:24:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 06:56:12.582602
- Title: Analyzing FOMC Minutes: Accuracy and Constraints of Language Models
- Title(参考訳): FOMC分数の解析:言語モデルの正確性と制約
- Authors: Wonseong Kim, Jan Frederic Sp\"orer, Siegfried Handschuh
- Abstract要約: この研究は、連邦公開市場委員会(FOMC)が、彼らの文章で感情を表現しないように注意していることを明らかにしている。
この分析には、VADERやFinBERTといった高度な言語モデリング技術と、GPT-4を用いた試行試験が使用されている。
- 参考スコア(独自算出の注目度): 6.647569337929869
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This research article analyzes the language used in the official statements
released by the Federal Open Market Committee (FOMC) after its scheduled
meetings to gain insights into the impact of FOMC official statements on
financial markets and economic forecasting. The study reveals that the FOMC is
careful to avoid expressing emotion in their sentences and follows a set of
templates to cover economic situations. The analysis employs advanced language
modeling techniques such as VADER and FinBERT, and a trial test with GPT-4. The
results show that FinBERT outperforms other techniques in predicting negative
sentiment accurately. However, the study also highlights the challenges and
limitations of using current NLP techniques to analyze FOMC texts and suggests
the potential for enhancing language models and exploring alternative
approaches.
- Abstract(参考訳): 本論文は、FOMCの公式声明が金融市場および経済予測に与える影響についての洞察を得るために、連邦公開市場委員会(FOMC)が予定した会合後に公表した公式声明で使用される言語を分析する。
この研究は、FOMCが文章で感情を表現しないように注意し、経済状況をカバーする一連のテンプレートに従うことを明らかにした。
この分析には、VADERやFinBERTといった高度な言語モデリング技術と、GPT-4を用いた試行試験が使用されている。
その結果、FinBERTはネガティブ感情を正確に予測する他の手法よりも優れていた。
しかし、本研究は、現在のnlp技術を用いたfomcテキストの分析の課題と限界を強調し、言語モデルの強化と代替アプローチの探求の可能性を示唆している。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Financial Sentiment Analysis on News and Reports Using Large Language Models and FinBERT [0.0]
本稿では,大規模言語モデル(LLM)とFinBERTの財務感情分析への応用について検討する。
この研究は、感情分類精度を向上させるため、ゼロショットと少数ショット戦略による迅速なエンジニアリングの利点を強調している。
論文 参考訳(メタデータ) (2024-10-02T19:48:17Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - Can GPT models be Financial Analysts? An Evaluation of ChatGPT and GPT-4
on mock CFA Exams [26.318005637849915]
本研究では,Large Language Models (LLM) の金銭的推論能力を評価することを目的とした。
チャータード・ファイナンシャル・アナリスト(CFA)プログラムの模擬試験問題を利用して、ChatGPTとGPT-4の総合的な評価を行う。
本稿では,モデルの性能と限界を詳細に分析し,CFA試験に合格する確率を推定する。
論文 参考訳(メタデータ) (2023-10-12T19:28:57Z) - Transforming Sentiment Analysis in the Financial Domain with ChatGPT [0.07499722271664146]
本研究では,金融感情分析における大規模言語モデル,特にChatGPT 3.5の可能性について検討する。
ChatGPTは、感情分類で約35%向上し、市場リターンと36%高い相関を示した。
この研究は、特にゼロショットの文脈において、迅速なエンジニアリングの重要性を浮き彫りにすることで、ChatGPTが金融アプリケーションにおける感情分析を大幅に強化する可能性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-08-13T09:20:47Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに対して、一貫性、凝集性、関連性、流動性のある回答を生成することができる。
本稿では,LLMの談話モデルにおける能力について詳細に評価する。
論文 参考訳(メタデータ) (2023-04-05T03:49:06Z) - Text analysis in financial disclosures [0.0]
会社の財務情報開示の殆どは、構造化されていないテキストである。
研究者は最近、情報開示のテキストコンテンツを分析し始めた。
この研究は、現在の感情指標の焦点の限界を強調して、開示分析方法に寄与する。
論文 参考訳(メタデータ) (2021-01-06T17:45:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。