A Meta-heuristic Approach to Estimate and Explain Classifier Uncertainty
- URL: http://arxiv.org/abs/2304.10284v1
- Date: Thu, 20 Apr 2023 13:09:28 GMT
- Title: A Meta-heuristic Approach to Estimate and Explain Classifier Uncertainty
- Authors: Andrew Houston, Georgina Cosma
- Abstract summary: This work proposes a set of class-independent meta-heuristics that can characterize the complexity of an instance in terms of factors are mutually relevant to both human and machine learning decision-making.
The proposed measures and framework hold promise for improving model development for more complex instances, as well as providing a new means of model abstention and explanation.
- Score: 0.4264192013842096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trust is a crucial factor affecting the adoption of machine learning (ML)
models. Qualitative studies have revealed that end-users, particularly in the
medical domain, need models that can express their uncertainty in
decision-making allowing users to know when to ignore the model's
recommendations. However, existing approaches for quantifying decision-making
uncertainty are not model-agnostic, or they rely on complex statistical
derivations that are not easily understood by laypersons or end-users, making
them less useful for explaining the model's decision-making process. This work
proposes a set of class-independent meta-heuristics that can characterize the
complexity of an instance in terms of factors are mutually relevant to both
human and ML decision-making. The measures are integrated into a meta-learning
framework that estimates the risk of misclassification. The proposed framework
outperformed predicted probabilities in identifying instances at risk of being
misclassified. The proposed measures and framework hold promise for improving
model development for more complex instances, as well as providing a new means
of model abstention and explanation.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Incorporating Domain Knowledge in Deep Neural Networks for Discrete
Choice Models [0.5801044612920815]
This paper proposes a framework that expands the potential of data-driven approaches for DCM.
It includes pseudo data samples that represent required relationships and a loss function that measures their fulfillment.
A case study demonstrates the potential of this framework for discrete choice analysis.
arXiv Detail & Related papers (2023-05-30T12:53:55Z) - On the Complexity of Adversarial Decision Making [101.14158787665252]
We show that the Decision-Estimation Coefficient is necessary and sufficient to obtain low regret for adversarial decision making.
We provide new structural results that connect the Decision-Estimation Coefficient to variants of other well-known complexity measures.
arXiv Detail & Related papers (2022-06-27T06:20:37Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Selective Dyna-style Planning Under Limited Model Capacity [26.63876180969654]
In model-based reinforcement learning, planning with an imperfect model of the environment has the potential to harm learning progress.
In this paper, we investigate the idea of using an imperfect model selectively.
The agent should plan in parts of the state space where the model would be helpful but refrain from using the model where it would be harmful.
arXiv Detail & Related papers (2020-07-05T18:51:50Z) - Value of Information Analysis via Active Learning and Knowledge Sharing
in Error-Controlled Adaptive Kriging [7.148732567427574]
This paper proposes the first surrogate-based framework for value of information (VoI) analysis.
It affords sharing equality-type information from observations among surrogate models to update likelihoods of multiple events of interest.
The proposed VoI analysis framework is applied for an optimal decision-making problem involving load testing of a truss bridge.
arXiv Detail & Related papers (2020-02-06T16:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.