Conditions for a quadratic quantum speedup in nonlinear transforms with applications to energy contract pricing
- URL: http://arxiv.org/abs/2304.10385v3
- Date: Mon, 5 Aug 2024 07:51:36 GMT
- Title: Conditions for a quadratic quantum speedup in nonlinear transforms with applications to energy contract pricing
- Authors: Gabriele Agliardi, Corey O'Meara, Kavitha Yogaraj, Kumar Ghosh, Piergiacomo Sabino, Marina Fernández-Campoamor, Giorgio Cortiana, Juan Bernabé-Moreno, Francesco Tacchino, Antonio Mezzacapo, Omar Shehab,
- Abstract summary: We develop an algorithm based on approximation of nonlinear functions, computed through Quantum Hadamard Products.
In our setting, a quantum speedup can be proven only when forms are bilogarithmic factors.
We exploit the dynamic circuit capabilities, recently introduced on IBM Quantum devices, to reduce the average depth of the Quantum Hadamard Product circuit proof.
- Score: 0.22730034612794422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computing nonlinear functions over multilinear forms is a general problem with applications in risk analysis. For instance in the domain of energy economics, accurate and timely risk management demands for efficient simulation of millions of scenarios, largely benefiting from computational speedups. We develop a novel hybrid quantum-classical algorithm based on polynomial approximation of nonlinear functions, computed through Quantum Hadamard Products, and we rigorously assess the conditions for its end-to-end speedup for different implementation variants against classical algorithms. In our setting, a quadratic quantum speedup, up to polylogarithmic factors, can be proven only when forms are bilinear and approximating polynomials have second degree, if efficient loading unitaries are available for the input data sets. We also enhance the bidirectional encoding, that allows tuning the balance between circuit depth and width, proposing an improved version that can be exploited for the calculation of inner products. Lastly, we exploit the dynamic circuit capabilities, recently introduced on IBM Quantum devices, to reduce the average depth of the Quantum Hadamard Product circuit. A proof of principle is implemented and validated on IBM Quantum systems.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Nonlinear dynamics as a ground-state solution on quantum computers [39.58317527488534]
We present variational quantum algorithms (VQAs) that encode both space and time in qubit registers.
The spacetime encoding enables us to obtain the entire time evolution from a single ground-state computation.
arXiv Detail & Related papers (2024-03-25T14:06:18Z) - Quantum algorithms for classical Boolean functions via adaptive
measurements: Exponential reductions in space-time resources [0.0]
We formulate computation of a variety of Boolean functions in the framework of adaptive measurement-based quantum computation.
Our results constitute an alternative proof of an old theorem regarding an oracular separation between the power of constant-depth quantum circuits and constant-depth classical circuits.
arXiv Detail & Related papers (2022-11-02T16:33:32Z) - Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization [44.96576908957141]
We present a hybrid classical-quantum framework based on the Frank-Wolfe algorithm, Q-FW, for solving quadratic, linear iterations problems on quantum computers.
arXiv Detail & Related papers (2022-03-23T18:00:03Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Fast inversion, preconditioned quantum linear system solvers, and fast
evaluation of matrix functions [4.327821619134312]
We introduce a quantum primitive called fast inversion, which can be used as a preconditioner for solving quantum linear systems.
We demonstrate the application of preconditioned linear system solvers for computing single-particle Green's functions of quantum many-body systems.
arXiv Detail & Related papers (2020-08-30T23:24:58Z) - Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices [0.0]
We introduce a quantum solver of contracted eigenvalue equations, the quantum analogue of classical methods for the energies.
We demonstrate the algorithm though computations on both a quantum simulator and two IBM quantum processing units.
arXiv Detail & Related papers (2020-04-23T18:35:26Z) - Model Predictive Control for Finite Input Systems using the D-Wave
Quantum Annealer [4.83782736808514]
The D-Wave quantum annealer has emerged as a novel computational architecture that is attracting significant interest.
We present a model predictive control (MPC) algorithm using a quantum annealer.
Two practical applications, namely stabilization of a spring-mass-damper system and dynamic audio quantization, are demonstrated.
arXiv Detail & Related papers (2020-01-06T05:11:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.