論文の概要: Launching a Robust Backdoor Attack under Capability Constrained
Scenarios
- arxiv url: http://arxiv.org/abs/2304.10985v1
- Date: Fri, 21 Apr 2023 14:35:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 14:34:41.426690
- Title: Launching a Robust Backdoor Attack under Capability Constrained
Scenarios
- Title(参考訳): 制約付きシナリオによるロバストバックドアアタックの起動
- Authors: Ming Yi, Yixiao Xu, Kangyi Ding, Mingyong Yin, Xiaolei Liu
- Abstract要約: ディープラーニングモデルは、透明性の欠如により、バックドア攻撃に対して脆弱である。
本研究では,ブラックボックスのバックドア攻撃を能力制約内で実施することを検討する。
本手法は,ブラックボックスのシナリオにおいて高い攻撃成功率を実現し,最先端のバックドア防御を回避する。
- 参考スコア(独自算出の注目度): 2.555905350183141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As deep neural networks continue to be used in critical domains, concerns
over their security have emerged. Deep learning models are vulnerable to
backdoor attacks due to the lack of transparency. A poisoned backdoor model may
perform normally in routine environments, but exhibit malicious behavior when
the input contains a trigger. Current research on backdoor attacks focuses on
improving the stealthiness of triggers, and most approaches require strong
attacker capabilities, such as knowledge of the model structure or control over
the training process. These attacks are impractical since in most cases the
attacker's capabilities are limited. Additionally, the issue of model
robustness has not received adequate attention. For instance, model
distillation is commonly used to streamline model size as the number of
parameters grows exponentially, and most of previous backdoor attacks failed
after model distillation; the image augmentation operations can destroy the
trigger and thus disable the backdoor. This study explores the implementation
of black-box backdoor attacks within capability constraints. An attacker can
carry out such attacks by acting as either an image annotator or an image
provider, without involvement in the training process or knowledge of the
target model's structure. Through the design of a backdoor trigger, our attack
remains effective after model distillation and image augmentation, making it
more threatening and practical. Our experimental results demonstrate that our
method achieves a high attack success rate in black-box scenarios and evades
state-of-the-art backdoor defenses.
- Abstract(参考訳): 深いニューラルネットワークが重要なドメインで使われ続けているため、セキュリティに対する懸念が浮上している。
ディープラーニングモデルは、透明性の欠如によるバックドア攻撃に対して脆弱である。
有害なバックドアモデルは通常、通常の環境で実行されるが、入力にトリガーが含まれていると悪意のある振る舞いを示す。
バックドア攻撃に関する現在の研究はトリガーのステルスネスの改善に焦点を当てており、ほとんどのアプローチではモデル構造やトレーニングプロセスの制御といった強力な攻撃能力を必要としている。
これらの攻撃は、ほとんどの場合、攻撃者の能力に制限があるため、実用的でない。
さらに、モデルロバスト性の問題には十分な注意が払われていない。
例えば、モデル蒸留は、パラメータの数が指数関数的に増加するにつれてモデルサイズを効率化するために一般的に使われ、以前のバックドア攻撃のほとんどはモデル蒸留後に失敗した。
本研究では,ブラックボックスのバックドア攻撃を能力制約内で実施することを検討する。
攻撃者は、訓練過程や対象モデルの構造に関する知識に関わらず、画像注釈器または画像提供者として行動することで、そのような攻撃を行うことができる。
バックドアトリガーの設計を通じて,モデル蒸留と画像増量後の攻撃は有効であり,より脅威的で実用的である。
実験により,ブラックボックスシナリオにおける攻撃成功率が向上し,最先端のバックドア防御を回避することができた。
関連論文リスト
- DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks [30.766013737094532]
我々は,DMGNNを,アウト・オブ・ディストリビューション(OOD)およびイン・ディストリビューション(ID)グラフバックドア攻撃に対して提案する。
DMGNNは、偽説明に基づいてラベル遷移を予測することによって、隠されたIDとOODトリガを容易に識別できる。
DMGNNは最新技術(SOTA)防衛法をはるかに上回り、モデル性能のほとんど無視できる劣化を伴って攻撃成功率を5%に低下させる。
論文 参考訳(メタデータ) (2024-10-18T01:08:03Z) - Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations [50.1394620328318]
既存のバックドア攻撃は主にバランスの取れたデータセットに焦点を当てている。
動的データ拡張操作(D$2$AO)という効果的なバックドア攻撃を提案する。
本手法は,クリーンな精度を維持しつつ,最先端の攻撃性能を実現することができる。
論文 参考訳(メタデータ) (2024-10-16T18:44:22Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
データ中毒のバックドア攻撃は、機械学習モデルにとって深刻なセキュリティ上の脅威である。
本稿では,トレーニング中のバックドアディフェンスに着目し,データセットが有害になりうる場合でもクリーンなモデルをトレーニングすることを目的とした。
PDB(Proactive Defensive Backdoor)と呼ばれる新しい防衛手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T07:52:26Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - Rethinking Backdoor Attacks on Dataset Distillation: A Kernel Method
Perspective [65.70799289211868]
本稿では, データセット蒸留に特化した2つの新しい理論駆動トリガパターン生成手法を提案する。
最適化に基づくトリガ設計フレームワークは,データセットの蒸留に対する効果的なバックドア攻撃を通知する。
論文 参考訳(メタデータ) (2023-11-28T09:53:05Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
我々は、信頼性の高い分類のための非定型表現を学ぶために、因果性に着想を得たバックドアディフェンス(CBD)を提案する。
CBDは、良性サンプルの予測において高い精度を維持しながら、バックドアの脅威を減らすのに有効である。
論文 参考訳(メタデータ) (2023-03-13T02:25:59Z) - Invisible Backdoor Attacks Using Data Poisoning in the Frequency Domain [8.64369418938889]
周波数領域に基づく一般化されたバックドア攻撃手法を提案する。
トレーニングプロセスのミスラベルやアクセスをすることなく、バックドアのインプラントを実装できる。
我々は,3つのデータセットに対して,ラベルなし,クリーンラベルのケースにおけるアプローチを評価した。
論文 参考訳(メタデータ) (2022-07-09T07:05:53Z) - Model-Contrastive Learning for Backdoor Defense [13.781375023320981]
モデル・コントラスト学習に基づく新しいバックドア・ディフェンス手法 MCL を提案する。
MCLは、良質なデータの高い精度を維持しながら、バックドアの脅威を減らすのに効果的である。
論文 参考訳(メタデータ) (2022-05-09T16:36:46Z) - Narcissus: A Practical Clean-Label Backdoor Attack with Limited
Information [22.98039177091884]
クリーンラベル」バックドア攻撃には、トレーニングセット全体の知識が必要である。
本稿では,対象クラスの代表例の知識のみに基づいて,クリーンラベルバックドア攻撃をマウントするアルゴリズムを提案する。
私たちの攻撃は、物理的な世界にトリガーが存在する場合でも、データセットやモデル間でうまく機能します。
論文 参考訳(メタデータ) (2022-04-11T16:58:04Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。