論文の概要: INK: Inheritable Natural Backdoor Attack Against Model Distillation
- arxiv url: http://arxiv.org/abs/2304.10985v3
- Date: Mon, 9 Sep 2024 03:19:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 04:24:51.608120
- Title: INK: Inheritable Natural Backdoor Attack Against Model Distillation
- Title(参考訳): INK:天然のバックドアをモデル蒸留で攻撃
- Authors: Xiaolei Liu, Ming Yi, Kangyi Ding, Bangzhou Xin, Yixiao Xu, Li Yan, Chao Shen,
- Abstract要約: InKは、モデル蒸留を標的とした、継承可能な自然バックドアアタックである。
INKは画像のばらつきをバックドアトリガーとして採用し、クリーンイメージとクリーンラベル攻撃の両方を可能にする。
例えば、INKは、既存の方法では平均1.4%の攻撃成功率に対して、蒸留後98%以上の攻撃成功率を維持している。
- 参考スコア(独自算出の注目度): 8.937026844871074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models are vulnerable to backdoor attacks, where attackers inject malicious behavior through data poisoning and later exploit triggers to manipulate deployed models. To improve the stealth and effectiveness of backdoors, prior studies have introduced various imperceptible attack methods targeting both defense mechanisms and manual inspection. However, all poisoning-based attacks still rely on privileged access to the training dataset. Consequently, model distillation using a trusted dataset has emerged as an effective defense against these attacks. To bridge this gap, we introduce INK, an inheritable natural backdoor attack that targets model distillation. The key insight behind INK is the use of naturally occurring statistical features in all datasets, allowing attackers to leverage them as backdoor triggers without direct access to the training data. Specifically, INK employs image variance as a backdoor trigger and enables both clean-image and clean-label attacks by manipulating the labels and image variance in an unauthenticated dataset. Once the backdoor is embedded, it transfers from the teacher model to the student model, even when defenders use a trusted dataset for distillation. Theoretical analysis and experimental results demonstrate the robustness of INK against transformation-based, search-based, and distillation-based defenses. For instance, INK maintains an attack success rate of over 98\% post-distillation, compared to an average success rate of 1.4\% for existing methods.
- Abstract(参考訳): 深層学習モデルはバックドア攻撃に対して脆弱で、攻撃者はデータ中毒によって悪意ある振る舞いを注入し、その後、デプロイされたモデルを操作するトリガーを悪用する。
バックドアのステルス性と有効性を改善するため,従来の研究では,防御機構と手動検査の両方を標的とした様々な非受容攻撃手法が導入された。
しかしながら、毒素ベースの攻撃はすべて、トレーニングデータセットへの特権的なアクセスに依存している。
その結果,これらの攻撃に対する効果的な防御手段として,信頼されたデータセットを用いたモデル蒸留が出現した。
このギャップを埋めるために、我々は、モデル蒸留を標的とした継承可能な自然バックドア攻撃であるINKを導入する。
INKの背後にある重要な洞察は、すべてのデータセットで自然に発生する統計的特徴を使用することで、攻撃者はトレーニングデータに直接アクセスすることなく、バックドアトリガとしてそれらを活用できる。
具体的には、INKはバックドアトリガとしてイメージ分散を採用し、ラベルを操作することによってクリーンイメージとクリーンラベル攻撃の両方を可能にする。
バックドアが埋め込まれると、ディフェンダーが蒸留のために信頼できるデータセットを使用している場合でも、教師モデルから生徒モデルに移行する。
理論的解析と実験により,INKは変換ベース,探索ベース,蒸留ベースディフェンスに対して堅牢であることが示された。
例えば、INKは、既存のメソッドの平均成功率1.4 %に対して、98 % 以上の攻撃成功率を維持している。
関連論文リスト
- DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks [30.766013737094532]
我々は,DMGNNを,アウト・オブ・ディストリビューション(OOD)およびイン・ディストリビューション(ID)グラフバックドア攻撃に対して提案する。
DMGNNは、偽説明に基づいてラベル遷移を予測することによって、隠されたIDとOODトリガを容易に識別できる。
DMGNNは最新技術(SOTA)防衛法をはるかに上回り、モデル性能のほとんど無視できる劣化を伴って攻撃成功率を5%に低下させる。
論文 参考訳(メタデータ) (2024-10-18T01:08:03Z) - Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations [50.1394620328318]
既存のバックドア攻撃は主にバランスの取れたデータセットに焦点を当てている。
動的データ拡張操作(D$2$AO)という効果的なバックドア攻撃を提案する。
本手法は,クリーンな精度を維持しつつ,最先端の攻撃性能を実現することができる。
論文 参考訳(メタデータ) (2024-10-16T18:44:22Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
データ中毒のバックドア攻撃は、機械学習モデルにとって深刻なセキュリティ上の脅威である。
本稿では,トレーニング中のバックドアディフェンスに着目し,データセットが有害になりうる場合でもクリーンなモデルをトレーニングすることを目的とした。
PDB(Proactive Defensive Backdoor)と呼ばれる新しい防衛手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T07:52:26Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - Rethinking Backdoor Attacks on Dataset Distillation: A Kernel Method
Perspective [65.70799289211868]
本稿では, データセット蒸留に特化した2つの新しい理論駆動トリガパターン生成手法を提案する。
最適化に基づくトリガ設計フレームワークは,データセットの蒸留に対する効果的なバックドア攻撃を通知する。
論文 参考訳(メタデータ) (2023-11-28T09:53:05Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
我々は、信頼性の高い分類のための非定型表現を学ぶために、因果性に着想を得たバックドアディフェンス(CBD)を提案する。
CBDは、良性サンプルの予測において高い精度を維持しながら、バックドアの脅威を減らすのに有効である。
論文 参考訳(メタデータ) (2023-03-13T02:25:59Z) - Invisible Backdoor Attacks Using Data Poisoning in the Frequency Domain [8.64369418938889]
周波数領域に基づく一般化されたバックドア攻撃手法を提案する。
トレーニングプロセスのミスラベルやアクセスをすることなく、バックドアのインプラントを実装できる。
我々は,3つのデータセットに対して,ラベルなし,クリーンラベルのケースにおけるアプローチを評価した。
論文 参考訳(メタデータ) (2022-07-09T07:05:53Z) - Model-Contrastive Learning for Backdoor Defense [13.781375023320981]
モデル・コントラスト学習に基づく新しいバックドア・ディフェンス手法 MCL を提案する。
MCLは、良質なデータの高い精度を維持しながら、バックドアの脅威を減らすのに効果的である。
論文 参考訳(メタデータ) (2022-05-09T16:36:46Z) - Narcissus: A Practical Clean-Label Backdoor Attack with Limited
Information [22.98039177091884]
クリーンラベル」バックドア攻撃には、トレーニングセット全体の知識が必要である。
本稿では,対象クラスの代表例の知識のみに基づいて,クリーンラベルバックドア攻撃をマウントするアルゴリズムを提案する。
私たちの攻撃は、物理的な世界にトリガーが存在する場合でも、データセットやモデル間でうまく機能します。
論文 参考訳(メタデータ) (2022-04-11T16:58:04Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。