Deep-Learning-based Fast and Accurate 3D CT Deformable Image
Registration in Lung Cancer
- URL: http://arxiv.org/abs/2304.11135v1
- Date: Fri, 21 Apr 2023 17:18:21 GMT
- Title: Deep-Learning-based Fast and Accurate 3D CT Deformable Image
Registration in Lung Cancer
- Authors: Yuzhen Ding, Hongying Feng, Yunze Yang, Jason Holmes, Zhengliang Liu,
David Liu, William W. Wong, Nathan Y. Yu, Terence T. Sio, Steven E. Schild,
Baoxin Li, Wei Liu
- Abstract summary: The visibility of the tumor is limited since the patient's 3D anatomy is projected onto a 2D plane.
A solution is to reconstruct the 3D CT image from the kV images obtained at the treatment isocenter in the treatment position.
A patient-specific vision-transformer-based network was developed and shown to be accurate and efficient.
- Score: 14.31661366393592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: In some proton therapy facilities, patient alignment relies on two
2D orthogonal kV images, taken at fixed, oblique angles, as no 3D on-the-bed
imaging is available. The visibility of the tumor in kV images is limited since
the patient's 3D anatomy is projected onto a 2D plane, especially when the
tumor is behind high-density structures such as bones. This can lead to large
patient setup errors. A solution is to reconstruct the 3D CT image from the kV
images obtained at the treatment isocenter in the treatment position.
Methods: An asymmetric autoencoder-like network built with vision-transformer
blocks was developed. The data was collected from 1 head and neck patient: 2
orthogonal kV images (1024x1024 voxels), 1 3D CT with padding (512x512x512)
acquired from the in-room CT-on-rails before kVs were taken and 2
digitally-reconstructed-radiograph (DRR) images (512x512) based on the CT. We
resampled kV images every 8 voxels and DRR and CT every 4 voxels, thus formed a
dataset consisting of 262,144 samples, in which the images have a dimension of
128 for each direction. In training, both kV and DRR images were utilized, and
the encoder was encouraged to learn the jointed feature map from both kV and
DRR images. In testing, only independent kV images were used. The full-size
synthetic CT (sCT) was achieved by concatenating the sCTs generated by the
model according to their spatial information. The image quality of the
synthetic CT (sCT) was evaluated using mean absolute error (MAE) and
per-voxel-absolute-CT-number-difference volume histogram (CDVH).
Results: The model achieved a speed of 2.1s and a MAE of <40HU. The CDVH
showed that <5% of the voxels had a per-voxel-absolute-CT-number-difference
larger than 185 HU.
Conclusion: A patient-specific vision-transformer-based network was developed
and shown to be accurate and efficient to reconstruct 3D CT images from kV
images.
Related papers
- Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer [6.361348748202733]
Voxel-based analysis (VBA) for population level radiotherapy outcomes modeling requires preserving inter-patient deformable image registration (DIR)
We developed a tumor-aware recurrent registration (TRACER) deep learning (DL) method and evaluated its suitability for VBA.
arXiv Detail & Related papers (2024-09-18T12:11:59Z) - OCTCube: A 3D foundation model for optical coherence tomography that improves cross-dataset, cross-disease, cross-device and cross-modality analysis [11.346324975034051]
OCTCube is a 3D foundation model pre-trained on 26,605 3D OCT volumes encompassing 1.62 million 2D OCT images.
It outperforms 2D models when predicting 8 retinal diseases in both inductive and cross-dataset settings.
It also shows superior performance on cross-device prediction and when predicting systemic diseases, such as diabetes and hypertension.
arXiv Detail & Related papers (2024-08-20T22:55:19Z) - Deep-Motion-Net: GNN-based volumetric organ shape reconstruction from single-view 2D projections [1.8189671456038365]
We propose an end-to-end graph neural network architecture that enables 3D organ shape reconstruction during radiotherapy.
The proposed model learns the mesh regression from a patient-specific template and deep features extracted from kV images at arbitrary projection angles.
Overall framework was tested quantitatively on synthetic respiratory motion scenarios and qualitatively on in-treatment images acquired over full scan series for liver cancer patients.
arXiv Detail & Related papers (2024-07-09T09:07:18Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios [53.94122089629544]
We introduce CT-GLIP (Grounded Language-Image Pretraining with CT scans), a novel method that constructs organ-level image-text pairs to enhance multimodal contrastive learning.
Our method, trained on a multimodal CT dataset comprising 44,011 organ-level vision-text pairs from 17,702 patients across 104 organs, demonstrates it can identify organs and abnormalities in a zero-shot manner using natural languages.
arXiv Detail & Related papers (2024-04-23T17:59:01Z) - Accurate Patient Alignment without Unnecessary Imaging Dose via Synthesizing Patient-specific 3D CT Images from 2D kV Images [10.538839084727975]
Tumor visibility is constrained due to the projection of patient's anatomy onto a 2D plane.
In treatment room with 3D-OBI such as cone beam CT(CBCT), the field of view(FOV) of CBCT is limited with unnecessarily high imaging dose.
We propose a dual-models framework built with hierarchical ViT blocks to reconstruct 3D CT from kV images obtained at the treatment position.
arXiv Detail & Related papers (2024-04-01T19:55:03Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
We propose a multi-view vertebra localization and identification from CT images.
We convert the 3D problem into a 2D localization and identification task on different views.
Our method can learn the multi-view global information naturally.
arXiv Detail & Related papers (2023-07-24T14:43:07Z) - XTransCT: Ultra-Fast Volumetric CT Reconstruction using Two Orthogonal
X-Ray Projections for Image-guided Radiation Therapy via a Transformer
Network [8.966238080182263]
We introduce a novel Transformer architecture, termed XTransCT, to facilitate real-time reconstruction of CT images from two-dimensional X-ray images.
Our findings indicate that our algorithm surpasses other methods in image quality, structural precision, and generalizability.
In comparison to previous 3D convolution-based approaches, we note a substantial speed increase of approximately 300 %, achieving 44 ms per 3D image reconstruction.
arXiv Detail & Related papers (2023-05-31T07:41:10Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.