論文の概要: ChatGPT, Large Language Technologies, and the Bumpy Road of Benefiting
Humanity
- arxiv url: http://arxiv.org/abs/2304.11163v1
- Date: Fri, 21 Apr 2023 22:53:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 20:01:51.062930
- Title: ChatGPT, Large Language Technologies, and the Bumpy Road of Benefiting
Humanity
- Title(参考訳): chatgpt、大規模言語技術、そして人類に利益をもたらす大胆な道
- Authors: Atoosa Kasirzadeh
- Abstract要約: AI技術がすべての人類に利益をもたらすという約束は、人類が世界的不平等を拡大し、実在の脅威を迫られる状況に直面していると想定されていることの、微妙な理解が欠如している限り、空白である。
我々はまた、単に投機的な質問とよく調査された質問を区別する、持続的で公平な方法で標準を開発する必要がある。
このような失敗は、私たちのAI技術の進歩が、倫理的および社会的意味をナビゲートする能力を上回る未来をもたらす可能性がある。
- 参考スコア(独自算出の注目度): 2.28438857884398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The allure of emerging AI technologies is undoubtedly thrilling. However, the
promise that AI technologies will benefit all of humanity is empty so long as
we lack a nuanced understanding of what humanity is supposed to be in the face
of widening global inequality and pressing existential threats. Going forward,
it is crucial to invest in rigorous and collaborative AI safety and ethics
research. We also need to develop standards in a sustainable and equitable way
that differentiate between merely speculative and well-researched questions.
Only the latter enable us to co-construct and deploy the values that are
necessary for creating beneficial AI. Failure to do so could result in a future
in which our AI technological advancements outstrip our ability to navigate
their ethical and social implications. This path we do not want to go down.
- Abstract(参考訳): 新興AI技術の魅力は間違いなくスリリングだ。
しかし、世界的不平等の拡大と存在の脅威に直面する中で、人類が何であるかを微妙な理解がなければ、ai技術がすべての人類に利益をもたらすという約束は空です。
今後は、厳格で協力的なAIの安全性と倫理の研究に投資することが不可欠だ。
我々はまた、単に推測的な質問とよく研究された質問を区別する、持続的で公平な方法で標準を開発する必要がある。
後者だけが、有益なAIを作成するのに必要な価値を共同構築し、デプロイすることができます。
このような失敗は、私たちのAI技術の進歩が、倫理的および社会的意味をナビゲートする能力を上回る未来をもたらす可能性がある。
この道は下りたくない。
関連論文リスト
- Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
今後数十年は、産業革命に匹敵する人類の転換点になるかもしれない。
10年前に立ち上げられたこのプロジェクトは、複数の専門分野の専門家による永続的な研究にコミットしている。
AI技術の短期的および長期的影響の両方に対処する、アクションのための10のレコメンデーションを提供します。
論文 参考訳(メタデータ) (2024-04-06T22:18:31Z) - AI Safety: Necessary, but insufficient and possibly problematic [1.6797508081737678]
この記事では、AI安全性に関する最近の誇大広告について批判的に考察する。
AIの安全性」とは実際に何を意味するのかを考察し、AIの安全性のデジタルフットプリントが持つ支配的な概念を概説する。
私たちは、AIの安全性が、悪用され有害なAIに安全を害することで、構造的危害を助長するAIを正規化する方法に関する懸念を共有します。
論文 参考訳(メタデータ) (2024-03-26T06:18:42Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Needs and Artificial Intelligence [0.0]
我々は、ニーズとAIの関係を反映し、ニーズを意識したAIシステムの実現を求める。
我々は、未来のAIベースの社会技術システムを共同開発する上で、最も重要なギャップ、障壁、イネーブラー、ドライバについて論じる。
論文 参考訳(メタデータ) (2022-02-18T15:16:22Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - The Role of Social Movements, Coalitions, and Workers in Resisting
Harmful Artificial Intelligence and Contributing to the Development of
Responsible AI [0.0]
あらゆる分野の連合は、AIの恥ずべき適用に抵抗するために世界中で活動している。
AIアルゴリズムにはバイアスがあり、不正で、乱雑な仮定が埋め込まれています。
AIの最大の貢献の1つは、人類の知恵が地球上でいかに重要かを理解することだ。
論文 参考訳(メタデータ) (2021-07-11T18:51:29Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
ショートガイドは、AI倫理と社会科学の紹介と、AIの開発に関する人類学的視点の両方を兼ね備えている。
AIシステムの社会的影響と、これらのシステムがいかにして我々の世界がどのように機能するかを再考するかについての洞察を、この分野に馴染みのない人たちに提供することを目指している。
論文 参考訳(メタデータ) (2020-10-07T12:25:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。