論文の概要: Needs and Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2203.03715v1
- Date: Fri, 18 Feb 2022 15:16:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-13 16:56:35.200883
- Title: Needs and Artificial Intelligence
- Title(参考訳): ニーズと人工知能
- Authors: Soheil Human and Ryan Watkins
- Abstract要約: 我々は、ニーズとAIの関係を反映し、ニーズを意識したAIシステムの実現を求める。
我々は、未来のAIベースの社会技術システムを共同開発する上で、最も重要なギャップ、障壁、イネーブラー、ドライバについて論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Throughout their history, homo sapiens have used technologies to better
satisfy their needs. The relation between needs and technology is so
fundamental that the US National Research Council defined the distinguishing
characteristic of technology as its goal "to make modifications in the world to
meet human needs". Artificial intelligence (AI) is one of the most promising
emerging technologies of our time. Similar to other technologies, AI is
expected "to meet [human] needs". In this article, we reflect on the
relationship between needs and AI, and call for the realisation of needs-aware
AI systems. We argue that re-thinking needs for, through, and by AI can be a
very useful means towards the development of realistic approaches for
Sustainable, Human-centric, Accountable, Lawful, and Ethical (HALE) AI systems.
We discuss some of the most critical gaps, barriers, enablers, and drivers of
co-creating future AI-based socio-technical systems in which [human] needs are
well considered and met. Finally, we provide an overview of potential threats
and HALE considerations that should be carefully taken into account, and call
for joint, immediate, and interdisciplinary efforts and collaborations.
- Abstract(参考訳): 人類の歴史を通じて、ホモ・サピエンスはそのニーズをよりよく満たすために技術を使ってきた。
ニーズと技術の関係は極めて基本的であり、米国国家研究評議会は技術の特徴を「人間のニーズを満たすために世界を変える」という目標として定義した。
人工知能(AI)は、現在最も有望な新興技術の1つである。
他の技術と同様に、AIは“人間のニーズを満たす”ことが期待される。
本稿では、ニーズとAIの関係を考察し、ニーズを意識したAIシステムの実現を求める。
私たちは、持続可能な、人間中心、説明可能な、法的な、倫理的な(HALE)AIシステムのための現実的なアプローチを開発するための、AIによるニーズの再考は、非常に有用な手段である、と論じています。
我々は、(人間)ニーズが十分に考慮され、満たされている未来のAIベースの社会技術システムを作成する上で、最も重要なギャップ、障壁、イネーブラー、ドライバについて議論する。
最後に、慎重に考慮すべき潜在的な脅威とHALEの考察の概要を説明し、共同、即時、学際的な取り組みと協力を求める。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Artificial Intelligence for Real Sustainability? -- What is Artificial
Intelligence and Can it Help with the Sustainability Transformation? [0.0]
この記事では、AI技術を簡潔に説明し、分類し、理論化する。
そして、持続可能性に関する議論の観点から、その分析を政治的に文脈化する。
持続可能な社会へ進む上で、AIは小さな役割を担っている、と氏は主張する。
論文 参考訳(メタデータ) (2023-06-15T15:40:00Z) - ChatGPT, Large Language Technologies, and the Bumpy Road of Benefiting
Humanity [2.28438857884398]
AI技術がすべての人類に利益をもたらすという約束は、人類が世界的不平等を拡大し、実在の脅威を迫られる状況に直面していると想定されていることの、微妙な理解が欠如している限り、空白である。
我々はまた、単に投機的な質問とよく調査された質問を区別する、持続的で公平な方法で標準を開発する必要がある。
このような失敗は、私たちのAI技術の進歩が、倫理的および社会的意味をナビゲートする能力を上回る未来をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-04-21T22:53:45Z) - End-User Development for Artificial Intelligence: A Systematic
Literature Review [2.347942013388615]
エンドユーザ開発(EUD)は、AIベースのシステムを自分たちのニーズに合わせて作成、カスタマイズ、あるいは適用することができる。
本稿では,AIシステムにおけるEUDの現在の状況に光を当てることを目的とした文献レビューを紹介する。
論文 参考訳(メタデータ) (2023-04-14T09:57:36Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
ショートガイドは、AI倫理と社会科学の紹介と、AIの開発に関する人類学的視点の両方を兼ね備えている。
AIシステムの社会的影響と、これらのシステムがいかにして我々の世界がどのように機能するかを再考するかについての洞察を、この分野に馴染みのない人たちに提供することを目指している。
論文 参考訳(メタデータ) (2020-10-07T12:25:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。