論文の概要: Granular-ball computing: an efficient, robust, and interpretable
adaptive multi-granularity representation and computation method
- arxiv url: http://arxiv.org/abs/2304.11171v3
- Date: Mon, 11 Dec 2023 10:20:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-12 22:57:06.624018
- Title: Granular-ball computing: an efficient, robust, and interpretable
adaptive multi-granularity representation and computation method
- Title(参考訳): グラニュラ・ボール・コンピューティング : 効率的で堅牢で解釈可能な適応型多粒度表現と計算法
- Authors: Shuyin Xia, Guoyin Wang, Xinbo Gao, Xiaoyu Lian
- Abstract要約: 人間の認知は「グローバルファースト」認知メカニズムで動作し、粗い詳細に基づいて情報処理を優先順位付けする。
解析パターンは、最も微細な粒度と単一粒度に依存するため、既存の計算手法のほとんどは効率が悪く、堅牢で、解釈可能である。
多粒度グラニュラーボールコンピューティングは、サンプル空間を適度に表現し包み込むために、様々な大きさのグラニュラーボールを使用する。
グラニュラーボールコンピューティングは、AIにおいてまれで革新的な理論的アプローチであり、効率性、堅牢性、解釈可能性を適応的かつ同時に向上させることができる。
- 参考スコア(独自算出の注目度): 54.2899493638937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human cognition operates on a "Global-first" cognitive mechanism,
prioritizing information processing based on coarse-grained details. This
mechanism inherently possesses an adaptive multi-granularity description
capacity, resulting in computational traits such as efficiency, robustness, and
interpretability. The analysis pattern reliance on the finest granularity and
single-granularity makes most existing computational methods less efficient,
robust, and interpretable, which is an important reason for the current lack of
interpretability in neural networks. Multi-granularity granular-ball computing
employs granular-balls of varying sizes to daptively represent and envelop the
sample space, facilitating learning based on these granular-balls. Given that
the number of coarse-grained "granular-balls" is fewer than sample points,
granular-ball computing proves more efficient. Moreover, the inherent
coarse-grained nature of granular-balls reduces susceptibility to fine-grained
sample disturbances, enhancing robustness. The multi-granularity construct of
granular-balls generates topological structures and coarse-grained
descriptions, naturally augmenting interpretability. Granular-ball computing
has successfully ventured into diverse AI domains, fostering the development of
innovative theoretical methods, including granular-ball classifiers, clustering
techniques, neural networks, rough sets, and evolutionary computing. This has
notably ameliorated the efficiency, noise robustness, and interpretability of
traditional methods. Overall, granular-ball computing is a rare and innovative
theoretical approach in AI that can adaptively and simultaneously enhance
efficiency, robustness, and interpretability. This article delves into the main
application landscapes for granular-ball computing, aiming to equip future
researchers with references and insights to refine and expand this promising
theory.
- Abstract(参考訳): 人間の認知は「グローバルファースト」認知メカニズムで動作し、粗い詳細に基づいて情報処理を優先する。
このメカニズムは本質的に適応的な多粒性記述能力を持ち、効率性、堅牢性、解釈可能性などの計算特性をもたらす。
解析パターンは、最も微細な粒度と単一粒度に依存するため、既存の計算手法のほとんどは効率が悪く、堅牢で、解釈可能である。
多粒度グラニュラーボールコンピューティングは、様々な大きさのグラニュラーボールを用いてサンプル空間を適度に表現し包み込み、これらのグラニュラーボールに基づく学習を容易にする。
粗粒の「粒状球」の数がサンプル点より少ないことを考えると、粒状球計算はより効率的である。
さらに,粒状ボールの粒状性は,粒状試料の乱れに対する感受性を低下させ,頑健性を高める。
粒状球の多面的構成は位相構造と粗い粒状記述を生成し、自然に解釈可能性を高める。
グラニュラー・ボール・コンピューティングは様々なAI分野への進出に成功し、グラニュラー・ボール分類器、クラスタリング技術、ニューラルネットワーク、粗いセット、進化的コンピューティングなど、革新的な理論的手法の開発を促進する。
これにより、従来の方法の効率性、雑音のロバスト性、解釈性が改善された。
全体として、グラニュラーボールコンピューティングはAIにおける稀で革新的な理論的アプローチであり、効率性、堅牢性、解釈可能性を適応的かつ同時に向上させることができる。
本稿は、将来研究者に、この期待できる理論を洗練・拡張するための参照と洞察を与えることを目的として、グラニュラーボールコンピューティングのための主要な応用展望を掘り下げる。
関連論文リスト
- Small Contributions, Small Networks: Efficient Neural Network Pruning Based on Relative Importance [25.579863542008646]
本稿では,アクティベーション統計に基づく直感的で解釈可能なプルーニング手法を提案する。
我々は,データセット全体にわたる重み付けの分布を構築し,そのパラメータを用いて刈り取りプロセスのガイドを行う。
提案手法は,いくつかのベースラインおよび最先端プルーニング技術より一貫して優れる。
論文 参考訳(メタデータ) (2024-10-21T16:18:31Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
トポロジカルデータ分析(TDA)は、複雑なデータから意味のある洞察を抽出する強力なツールとして登場した。
本稿では,ベッチ曲線の次数増加に基づくBettiカーネルの量子的定義法を提案する。
論文 参考訳(メタデータ) (2023-07-14T14:48:52Z) - Balancing Explainability-Accuracy of Complex Models [8.402048778245165]
我々は,コリレーションの影響に基づき,複雑なモデルに対する新しいアプローチを提案する。
独立機能と依存機能の両方のシナリオに対するアプローチを提案する。
従属特徴に対する提案手法の複雑さの上限を提供する。
論文 参考訳(メタデータ) (2023-05-23T14:20:38Z) - Fuzzy Granular-Ball Computing Framework and Its Implementation in SVM [0.8916420423563476]
本稿ではファジィ集合に粒度計算を導入することによりファジィ粒度計算分類器の枠組みを提案する。
計算フレームワークは、ポイントではなくグラニュラーボール入力に基づいている。
フレームワークはファジィサポートベクトルマシン(FSVM)に拡張され、グラニュラーボールファジィSVM(GBFSVM)が導出される。
論文 参考訳(メタデータ) (2022-10-21T02:03:52Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - An Efficient and Adaptive Granular-ball Generation Method in
Classification Problem [69.02474089703678]
グラニュラーボールコンピューティングは、グラニュラーコンピューティングのための効率的で堅牢でスケーラブルな学習方法である。
本稿では,$k$-meansを置き換えるために,ディビジョンを用いたグラニュラーボール生成を高速化する手法を提案する。
従来の方法と同様の精度を確保しつつ、グラニュラーボール生成の効率を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-01-12T07:26:19Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Incorporating physical constraints in a deep probabilistic machine
learning framework for coarse-graining dynamical systems [7.6146285961466]
本稿では,予測の不確実性の定量化を可能にする,データに基づく確率論的視点を提供する。
確率的状態空間モデルを用いて粗粒化過程を定式化する。
完全な微細なシステムの進化を再構築することができる。
論文 参考訳(メタデータ) (2019-12-30T16:07:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。