論文の概要: Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model
- arxiv url: http://arxiv.org/abs/2304.11332v1
- Date: Sat, 22 Apr 2023 07:11:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 19:07:02.748786
- Title: Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model
- Title(参考訳): SAMによる入力増強:Segmentation Foundation Modelによる医用画像分割の促進
- Authors: Yizhe Zhang, Tao Zhou, Peixian Liang, Danny Z. Chen
- Abstract要約: Segment Anything Model (SAM) はコンピュータビジョンタスクのための汎用セグメンテーションのための大規模モデルである。
SAMは100万枚の画像と10億枚以上のマスクを使って訓練され、自然の風景画像に広範囲のオブジェクトのセグメンテーション結果を生成することができる。
本報告では,SAMは医用画像の高品質なセグメンテーションを提供していないが,その生成マスク,特徴,安定性スコアは,より優れた医用画像セグメンテーションモデルの構築と訓練に有用であることを示す。
- 参考スコア(独自算出の注目度): 34.26198831167993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Segment Anything Model (SAM) is a recently developed large model for
general-purpose segmentation for computer vision tasks. SAM was trained using
11 million images with over 1 billion masks and can produce segmentation
results for a wide range of objects in natural scene images. SAM can be viewed
as a general perception model for segmentation (partitioning images into
semantically meaningful regions). Thus, how to utilize such a large foundation
model for medical image segmentation is an emerging research target. This paper
shows that although SAM does not immediately give high-quality segmentation for
medical images, its generated masks, features, and stability scores are useful
for building and training better medical image segmentation models. In
particular, we demonstrate how to use SAM to augment image inputs for a
commonly-used medical image segmentation model (e.g., U-Net). Experiments on
two datasets show the effectiveness of our proposed method.
- Abstract(参考訳): Segment Anything Model (SAM) はコンピュータビジョンタスクのための汎用セグメンテーションのための大規模モデルである。
SAMは100万枚の画像と10億枚以上のマスクを使って訓練され、自然の風景画像に広範囲のオブジェクトのセグメンテーション結果を生成することができる。
SAMは、セグメンテーション(イメージを意味のある領域に分割する)の一般的な知覚モデルと見なすことができる。
このように、医療画像セグメンテーションにこのような大きな基盤モデルを利用する方法が、新たな研究対象となっている。
本報告では,samは医用画像の高品質セグメンテーションを直ちに提供していないが,生成したマスク,特徴,安定性スコアは医用画像セグメンテーションモデルの構築と訓練に有用であることを示す。
特に,一般に用いられている医用画像分割モデル(U-Netなど)のイメージ入力をSAMで拡張する方法を示す。
2つのデータセットを用いた実験により,提案手法の有効性を示す。
関連論文リスト
- SAM-UNet:Enhancing Zero-Shot Segmentation of SAM for Universal Medical Images [40.4422523499489]
Segment Anything Model (SAM) は、様々な自然画像のセグメンテーションタスクにおいて印象的な性能を示した。
本稿では,U-Netを元のSAMに組み込んだ新たな基盤モデルSAMUNetを提案する。
我々は,SA-Med2D-16MでSAM-UNetをトレーニングした。
論文 参考訳(メタデータ) (2024-08-19T11:01:00Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
そこで本研究では,海洋生物のセグメンテーションのためのMAS-SAMという新しい特徴学習フレームワークを提案する。
本手法により,グローバルな文脈的手がかりからよりリッチな海洋情報を抽出し,よりきめ細かな局部的詳細を抽出できる。
論文 参考訳(メタデータ) (2024-04-24T07:38:14Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
この作業では、Segment Anything Modelを同じ入力イメージで動作するエンコーダに置き換える。
複数の医用画像とビデオのベンチマークで最先端の結果を得る。
内部の知識を検査し、軽量なセグメンテーションソリューションを提供するために、浅いデコンボリューションネットワークによってマスクに復号化することを学ぶ。
論文 参考訳(メタデータ) (2023-06-10T07:27:00Z) - Personalize Segment Anything Model with One Shot [52.54453744941516]
我々は,Segment Anything Model (SAM) のためのトレーニング不要なパーソナライズ手法を提案する。
PerSAMは、参照マスクを持つ1つのイメージしか持たないため、最初にターゲットのコンセプトを以前のロケーションでローカライズする。
PerSAMは、ターゲット誘導された注意、ターゲットセマンティックなプロンプト、そしてカスケードされたポストリファインメントという3つのテクニックを通じて、他の画像やビデオにセグメントする。
論文 参考訳(メタデータ) (2023-05-04T17:59:36Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
我々は,大規模画像分割モデルであるSAM(Segment Anything Model)に基づいて,医用画像分割のための大規模モデルをカスタマイズする新たな研究パラダイムを探求する。
SAMedは、SAMイメージエンコーダにローランクベース(LoRA)ファインタニング戦略を適用し、ラベル付き医用画像セグメンテーションデータセットにプロンプトエンコーダとマスクデコーダを併用する。
我々の訓練されたSAMedモデルは,最先端の手法に匹敵する医用画像のセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-04-26T19:05:34Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) は、ユーザ定義オブジェクトをインタラクティブな方法でセグメント化する基礎モデルである。
SAMの医用画像の分類能力について,各種のモダリティと解剖から,19の医用画像データセットの集合体を用いて評価した。
論文 参考訳(メタデータ) (2023-04-20T17:50:18Z) - SAMM (Segment Any Medical Model): A 3D Slicer Integration to SAM [6.172995387355581]
3次元スライダにおけるSAMの拡張であるSegment Any Medical Model (SAMM)を紹介する。
SAMMは完全なサイクルの0.6秒のレイテンシを実現し、ほぼリアルタイムで画像マスクを推測できる。
論文 参考訳(メタデータ) (2023-04-12T05:39:38Z) - Segment Anything Model (SAM) for Digital Pathology: Assess Zero-shot
Segmentation on Whole Slide Imaging [12.533476185972527]
画像セグメンテーションの基礎モデルとしてセグメンテーションモデル(SAM)がリリースされた。
スライド画像全体(WSI)における代表セグメンテーションタスクにおけるSAMモデルのゼロショットセグメンテーション性能を評価する。
その結果,0ショットSAMモデルは大きな連結オブジェクトに対して顕著なセグメンテーション性能を実現することが示唆された。
論文 参考訳(メタデータ) (2023-04-09T04:06:59Z) - Segment Anything [108.16489338211093]
私たちはこれまでで最大のセグメンテーションデータセットを構築し、1100万ライセンスのマスクを10億枚以上使用し、画像のプライバシーを尊重しています。
このモデルは、高速に撮影できるように設計および訓練されており、ゼロショットを新しい画像配信やタスクに転送することができる。
多数のタスクでその能力を評価した結果、ゼロショット性能は印象的であることが判明した。
論文 参考訳(メタデータ) (2023-04-05T17:59:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。