Gen-NeRF: Efficient and Generalizable Neural Radiance Fields via Algorithm-Hardware Co-Design
- URL: http://arxiv.org/abs/2304.11842v4
- Date: Sat, 04 Jan 2025 03:21:45 GMT
- Title: Gen-NeRF: Efficient and Generalizable Neural Radiance Fields via Algorithm-Hardware Co-Design
- Authors: Yonggan Fu, Zhifan Ye, Jiayi Yuan, Shunyao Zhang, Sixu Li, Haoran You, Yingyan Celine Lin,
- Abstract summary: Gen-NeRF is an algorithm-hardware co-design framework dedicated to generalizable NeRF acceleration.<n>On the algorithm side, Gen-NeRF integrates a coarse-then-focus sampling strategy.<n>On the hardware side, Gen-NeRF highlights an accelerator micro-architecture to maximize the data reuse opportunities.
- Score: 17.32288942793313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Novel view synthesis is an essential functionality for enabling immersive experiences in various Augmented- and Virtual-Reality (AR/VR) applications, for which generalizable Neural Radiance Fields (NeRFs) have gained increasing popularity thanks to their cross-scene generalization capability. Despite their promise, the real-device deployment of generalizable NeRFs is bottlenecked by their prohibitive complexity due to the required massive memory accesses to acquire scene features, causing their ray marching process to be memory-bounded. To this end, we propose Gen-NeRF, an algorithm-hardware co-design framework dedicated to generalizable NeRF acceleration, which for the first time enables real-time generalizable NeRFs. On the algorithm side, Gen-NeRF integrates a coarse-then-focus sampling strategy, leveraging the fact that different regions of a 3D scene contribute differently to the rendered pixel, to enable sparse yet effective sampling. On the hardware side, Gen-NeRF highlights an accelerator micro-architecture to maximize the data reuse opportunities among different rays by making use of their epipolar geometric relationship. Furthermore, our Gen-NeRF accelerator features a customized dataflow to enhance data locality during point-to-hardware mapping and an optimized scene feature storage strategy to minimize memory bank conflicts. Extensive experiments validate the effectiveness of our proposed Gen-NeRF framework in enabling real-time and generalizable novel view synthesis.
Related papers
- NeRFlex: Resource-aware Real-time High-quality Rendering of Complex Scenes on Mobile Devices [12.392923990003753]
We present NeRFlex, a real-time rendering framework for complex scenes on mobile devices.
NeRFlex integrates mobile NeRF rendering with multi-NeRF representations that decompose a scene into multiple sub-scenes.
Experiments on real-world datasets and mobile devices demonstrate that NeRFlex achieves real-time, high-quality rendering.
arXiv Detail & Related papers (2025-04-04T12:53:33Z) - Few-shot NeRF by Adaptive Rendering Loss Regularization [78.50710219013301]
Novel view synthesis with sparse inputs poses great challenges to Neural Radiance Field (NeRF)
Recent works demonstrate that the frequency regularization of Positional rendering can achieve promising results for few-shot NeRF.
We propose Adaptive Rendering loss regularization for few-shot NeRF, dubbed AR-NeRF.
arXiv Detail & Related papers (2024-10-23T13:05:26Z) - GMT: Enhancing Generalizable Neural Rendering via Geometry-Driven Multi-Reference Texture Transfer [40.70828307740121]
Novel view synthesis (NVS) aims to generate images at arbitrary viewpoints using multi-view images, and recent insights from neural radiance fields (NeRF) have contributed to remarkable improvements.
G-NeRF still struggles in representing fine details for a specific scene due to the absence of per-scene optimization.
We propose a Geometry-driven Multi-reference Texture transfer network (GMT) available as a plug-and-play module designed for G-NeRF.
arXiv Detail & Related papers (2024-10-01T13:30:51Z) - Spatial Annealing for Efficient Few-shot Neural Rendering [73.49548565633123]
We introduce an accurate and efficient few-shot neural rendering method named textbfSpatial textbfAnnealing regularized textbfNeRF (textbfSANeRF)
By adding merely one line of code, SANeRF delivers superior rendering quality and much faster reconstruction speed compared to current few-shot neural rendering methods.
arXiv Detail & Related papers (2024-06-12T02:48:52Z) - SGCNeRF: Few-Shot Neural Rendering via Sparse Geometric Consistency Guidance [106.0057551634008]
FreeNeRF attempts to overcome this limitation by integrating implicit geometry regularization.
New study introduces a novel feature matching based sparse geometry regularization module.
module excels in pinpointing high-frequency keypoints, thereby safeguarding the integrity of fine details.
arXiv Detail & Related papers (2024-04-01T08:37:57Z) - Hyb-NeRF: A Multiresolution Hybrid Encoding for Neural Radiance Fields [12.335934855851486]
We present Hyb-NeRF, a novel neural radiance field with a multi-resolution hybrid encoding.
We show that Hyb-NeRF achieves faster rendering speed with better rending quality and even a lower memory footprint in comparison to previous methods.
arXiv Detail & Related papers (2023-11-21T10:01:08Z) - VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for
Enhanced Indoor View Synthesis [51.49008959209671]
We introduce VoxNeRF, a novel approach that leverages volumetric representations to enhance the quality and efficiency of indoor view synthesis.
We employ multi-resolution hash grids to adaptively capture spatial features, effectively managing occlusions and the intricate geometry of indoor scenes.
We validate our approach against three public indoor datasets and demonstrate that VoxNeRF outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-11-09T11:32:49Z) - Adaptive Multi-NeRF: Exploit Efficient Parallelism in Adaptive Multiple
Scale Neural Radiance Field Rendering [3.8200916793910973]
Recent advances in Neural Radiance Fields (NeRF) have demonstrated significant potential for representing 3D scene appearances as implicit neural networks.
However, the lengthy training and rendering process hinders the widespread adoption of this promising technique for real-time rendering applications.
We present an effective adaptive multi-NeRF method designed to accelerate the neural rendering process for large scenes.
arXiv Detail & Related papers (2023-10-03T08:34:49Z) - Enhancing NeRF akin to Enhancing LLMs: Generalizable NeRF Transformer
with Mixture-of-View-Experts [88.23732496104667]
Cross-scene generalizable NeRF models have become a new spotlight of the NeRF field.
We bridge "neuralized" architectures with the powerful Mixture-of-Experts (MoE) idea from large language models.
Our proposed model, dubbed GNT with Mixture-of-View-Experts (GNT-MOVE), has experimentally shown state-of-the-art results when transferring to unseen scenes.
arXiv Detail & Related papers (2023-08-22T21:18:54Z) - MF-NeRF: Memory Efficient NeRF with Mixed-Feature Hash Table [62.164549651134465]
We propose MF-NeRF, a memory-efficient NeRF framework that employs a Mixed-Feature hash table to improve memory efficiency and reduce training time while maintaining reconstruction quality.
Our experiments with state-of-the-art Instant-NGP, TensoRF, and DVGO, indicate our MF-NeRF could achieve the fastest training time on the same GPU hardware with similar or even higher reconstruction quality.
arXiv Detail & Related papers (2023-04-25T05:44:50Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
We propose a novel approach to distill and bake NeRFs into highly efficient mesh-based neural representations.
We demonstrate the effectiveness and superiority of our approach via extensive experiments on a range of standard datasets.
arXiv Detail & Related papers (2023-04-20T17:59:52Z) - Re-ReND: Real-time Rendering of NeRFs across Devices [56.081995086924216]
Re-ReND is designed to achieve real-time performance by converting the NeRF into a representation that can be efficiently processed by standard graphics pipelines.
We find that Re-ReND can achieve over a 2.6-fold increase in rendering speed versus the state-of-the-art without perceptible losses in quality.
arXiv Detail & Related papers (2023-03-15T15:59:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.