A Benchmark for Cycling Close Pass Near Miss Event Detection from Video
Streams
- URL: http://arxiv.org/abs/2304.11868v1
- Date: Mon, 24 Apr 2023 07:30:01 GMT
- Title: A Benchmark for Cycling Close Pass Near Miss Event Detection from Video
Streams
- Authors: Mingjie Li, Tharindu Rathnayake, Ben Beck, Lingheng Meng, Zijue Chen,
Akansel Cosgun, Xiaojun Chang, Dana Kuli\'c
- Abstract summary: We introduce a novel benchmark, called Cyc-CP, towards cycling close pass near miss event detection from video streams.
We propose two benchmark models based on deep learning techniques for these two problems.
Our models can achieve 88.13% and 84.60% accuracy on the real-world dataset.
- Score: 35.17510169229505
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cycling is a healthy and sustainable mode of transport. However, interactions
with motor vehicles remain a key barrier to increased cycling participation.
The ability to detect potentially dangerous interactions from on-bike sensing
could provide important information to riders and policy makers. Thus,
automated detection of conflict between cyclists and drivers has attracted
researchers from both computer vision and road safety communities. In this
paper, we introduce a novel benchmark, called Cyc-CP, towards cycling close
pass near miss event detection from video streams. We first divide this task
into scene-level and instance-level problems. Scene-level detection asks an
algorithm to predict whether there is a close pass near miss event in the input
video clip. Instance-level detection aims to detect which vehicle in the scene
gives rise to a close pass near miss. We propose two benchmark models based on
deep learning techniques for these two problems. For training and testing those
models, we construct a synthetic dataset and also collect a real-world dataset.
Our models can achieve 88.13% and 84.60% accuracy on the real-world dataset,
respectively. We envision this benchmark as a test-bed to accelerate cycling
close pass near miss detection and facilitate interaction between the fields of
road safety, intelligent transportation systems and artificial intelligence.
Both the benchmark datasets and detection models will be available at
https://github.com/SustainableMobility/cyc-cp to facilitate experimental
reproducibility and encourage more in-depth research in the field.
Related papers
- G-MEMP: Gaze-Enhanced Multimodal Ego-Motion Prediction in Driving [71.9040410238973]
We focus on inferring the ego trajectory of a driver's vehicle using their gaze data.
Next, we develop G-MEMP, a novel multimodal ego-trajectory prediction network that combines GPS and video input with gaze data.
The results show that G-MEMP significantly outperforms state-of-the-art methods in both benchmarks.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Monocular Cyclist Detection with Convolutional Neural Networks [0.0]
This study aims to reduce the number of vehicle-cyclist collisions, which are often caused by poor driver attention to blind spots.
We designed a state-of-the-art real-time monocular cyclist detection that can detect cyclists with object detection convolutional neural networks.
We conclude that this cyclist detection device can accurately and quickly detect cyclists and has the potential to improve cyclist safety significantly.
arXiv Detail & Related papers (2023-01-16T13:54:13Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
This work presents a simultaneous clustering and segmentation approach for vehicle CAN-data that identifies common driving events in an unsupervised manner.
We evaluate our approach with a dataset of real Tesla Model 3 vehicle CAN-data and a two-hour driving session that we annotated with different driving events.
arXiv Detail & Related papers (2023-01-12T13:10:47Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
arXiv Detail & Related papers (2022-08-12T19:07:20Z) - Cross-Camera Trajectories Help Person Retrieval in a Camera Network [124.65912458467643]
Existing methods often rely on purely visual matching or consider temporal constraints but ignore the spatial information of the camera network.
We propose a pedestrian retrieval framework based on cross-camera generation, which integrates both temporal and spatial information.
To verify the effectiveness of our method, we construct the first cross-camera pedestrian trajectory dataset.
arXiv Detail & Related papers (2022-04-27T13:10:48Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Interaction Detection Between Vehicles and Vulnerable Road Users: A Deep
Generative Approach with Attention [9.442285577226606]
We propose a conditional generative model for interaction detection at intersections.
It aims to automatically analyze massive video data about the continuity of road users' behavior.
The model's efficacy was validated by testing on real-world datasets.
arXiv Detail & Related papers (2021-05-09T10:03:55Z) - CyclingNet: Detecting cycling near misses from video streams in complex
urban scenes with deep learning [1.462434043267217]
CyclingNet is a deep computer vision model based on convolutional structure embedded with self-attention bidirectional long-short term memory (LSTM) blocks.
After 42 hours of training on a single GPU, the model shows high accuracy on the training, testing and validation sets.
The model is intended to be used for generating information that can draw significant conclusions regarding cycling behaviour in cities.
arXiv Detail & Related papers (2021-01-31T23:59:28Z) - Edge Computing for Real-Time Near-Crash Detection for Smart
Transportation Applications [29.550609157368466]
Traffic near-crash events serve as critical data sources for various smart transportation applications.
This paper leverages the power of edge computing to address these challenges by processing the video streams from existing dashcams onboard in a real-time manner.
It is among the first efforts in applying edge computing for real-time traffic video analytics and is expected to benefit multiple sub-fields in smart transportation research and applications.
arXiv Detail & Related papers (2020-08-02T19:39:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.