A Forward and Backward Compatible Framework for Few-shot Class-incremental Pill Recognition
- URL: http://arxiv.org/abs/2304.11959v2
- Date: Mon, 25 Mar 2024 15:15:41 GMT
- Title: A Forward and Backward Compatible Framework for Few-shot Class-incremental Pill Recognition
- Authors: Jinghua Zhang, Li Liu, Kai Gao, Dewen Hu,
- Abstract summary: This paper introduces the first few-shot class-incremental pill recognition framework.
It encompasses forward-compatible and backward-compatible learning components.
Our experimental results demonstrate that our framework surpasses existing State-of-the-art (SOTA) methods.
- Score: 24.17119669744624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic Pill Recognition (APR) systems are crucial for enhancing hospital efficiency, assisting visually impaired individuals, and preventing cross-infection. However, most existing deep learning-based pill recognition systems can only perform classification on classes with sufficient training data. In practice, the high cost of data annotation and the continuous increase in new pill classes necessitate the development of a few-shot class-incremental pill recognition system. This paper introduces the first few-shot class-incremental pill recognition framework, named Discriminative and Bidirectional Compatible Few-Shot Class-Incremental Learning (DBC-FSCIL). It encompasses forward-compatible and backward-compatible learning components. In forward-compatible learning, we propose an innovative virtual class synthesis strategy and a Center-Triplet (CT) loss to enhance discriminative feature learning. These virtual classes serve as placeholders in the feature space for future class updates, providing diverse semantic knowledge for model training. For backward-compatible learning, we develop a strategy to synthesize reliable pseudo-features of old classes using uncertainty quantification, facilitating Data Replay (DR) and Knowledge Distillation (KD). This approach allows for the flexible synthesis of features and effectively reduces additional storage requirements for samples and models. Additionally, we construct a new pill image dataset for FSCIL and assess various mainstream FSCIL methods, establishing new benchmarks. Our experimental results demonstrate that our framework surpasses existing State-of-the-art (SOTA) methods. The code is available at https://github.com/zhang-jinghua/DBC-FSCIL.
Related papers
- Queryable Prototype Multiple Instance Learning with Vision-Language Models for Incremental Whole Slide Image Classification [10.667645628712542]
This paper proposes the first Vision-Language-based framework with Queryable Prototype Multiple Instance Learning (QPMIL-VL) specially designed for incremental WSI classification.
experiments on four TCGA datasets demonstrate that our QPMIL-VL framework is effective for incremental WSI classification.
arXiv Detail & Related papers (2024-10-14T14:49:34Z) - Data-Free Class Incremental Gesture Recognition via Synthetic Feature Sampling [10.598646625077025]
DFCIL aims to enable models to continuously learn new classes while retraining knowledge of old classes, even when the training data for old classes is unavailable.
We developed Synthetic Feature Replay (SFR) that can sample synthetic features from class prototypes to replay for old classes and augment for new classes.
Our proposed method showcases significant advancements over the state-of-the-art, achieving up to 15% enhancements in mean accuracy across all steps.
arXiv Detail & Related papers (2024-08-21T18:44:15Z) - Few-Shot Class-Incremental Learning with Prior Knowledge [94.95569068211195]
We propose Learning with Prior Knowledge (LwPK) to enhance the generalization ability of the pre-trained model.
Experimental results indicate that LwPK effectively enhances the model resilience against catastrophic forgetting.
arXiv Detail & Related papers (2024-02-02T08:05:35Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - Adapter Learning in Pretrained Feature Extractor for Continual Learning
of Diseases [66.27889778566734]
Currently intelligent diagnosis systems lack the ability of continually learning to diagnose new diseases once deployed.
In particular, updating an intelligent diagnosis system with training data of new diseases would cause catastrophic forgetting of old disease knowledge.
An adapter-based Continual Learning framework called ACL is proposed to help effectively learn a set of new diseases.
arXiv Detail & Related papers (2023-04-18T15:01:45Z) - Leveraging Old Knowledge to Continually Learn New Classes in Medical
Images [16.730335437094592]
We focus on how old knowledge can be leveraged to learn new classes without catastrophic forgetting.
Our solution is able to achieve superior performance over state-of-the-art baselines in terms of class accuracy and forgetting.
arXiv Detail & Related papers (2023-03-24T02:10:53Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Self-Supervised Learning Aided Class-Incremental Lifelong Learning [17.151579393716958]
We study the issue of catastrophic forgetting in class-incremental learning (Class-IL)
In training procedure of Class-IL, as the model has no knowledge about following tasks, it would only extract features necessary for tasks learned so far, whose information is insufficient for joint classification.
We propose to combine self-supervised learning, which can provide effective representations without requiring labels, with Class-IL to partly get around this problem.
arXiv Detail & Related papers (2020-06-10T15:15:27Z) - Few-Shot Class-Incremental Learning [68.75462849428196]
We focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem.
FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones.
We represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes.
arXiv Detail & Related papers (2020-04-23T03:38:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.