論文の概要: Generative Flow Networks for Precise Reward-Oriented Active Learning on
Graphs
- arxiv url: http://arxiv.org/abs/2304.11989v1
- Date: Mon, 24 Apr 2023 10:47:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 15:11:20.909500
- Title: Generative Flow Networks for Precise Reward-Oriented Active Learning on
Graphs
- Title(参考訳): グラフ上の報酬指向アクティブラーニングのための生成フローネットワーク
- Authors: Yinchuan Li, Zhigang Li, Wenqian Li, Yunfeng Shao, Yan Zheng and
Jianye Hao
- Abstract要約: 本稿では,グラフ能動学習問題をGFlowGNNと呼ばれる生成過程として定式化し,逐次動作によって様々なサンプルを生成する。
提案手法は,様々な最先端手法よりも優れた探索能力と伝達性を有することを示す。
- 参考スコア(独自算出の注目度): 34.76241250013461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many score-based active learning methods have been successfully applied to
graph-structured data, aiming to reduce the number of labels and achieve better
performance of graph neural networks based on predefined score functions.
However, these algorithms struggle to learn policy distributions that are
proportional to rewards and have limited exploration capabilities. In this
paper, we innovatively formulate the graph active learning problem as a
generative process, named GFlowGNN, which generates various samples through
sequential actions with probabilities precisely proportional to a predefined
reward function. Furthermore, we propose the concept of flow nodes and flow
features to efficiently model graphs as flows based on generative flow
networks, where the policy network is trained with specially designed rewards.
Extensive experiments on real datasets show that the proposed approach has good
exploration capability and transferability, outperforming various
state-of-the-art methods.
- Abstract(参考訳): 多くのスコアベースのアクティブラーニング手法がグラフ構造化データに適用され、ラベル数を減らし、予め定義されたスコア関数に基づいたグラフニューラルネットワークの性能向上を目指している。
しかし,これらのアルゴリズムは報酬に比例し,限られた探索能力を有する政策分布の学習に苦慮している。
本稿では,グラフ能動学習問題を生成過程として,GFlowGNN(G FlowGNN)を革新的に定式化した。
さらに,生成フローネットワークに基づくグラフを効率的にモデル化するためのフローノードとフロー特徴の概念を提案し,ポリシーネットワークを特別に設計された報酬で訓練する。
実データセットに関する広範囲な実験により、提案手法は、様々な最先端手法よりも優れた探索能力と転送性を有することが示された。
関連論文リスト
- Distributional GFlowNets with Quantile Flows [73.73721901056662]
Generative Flow Networks(GFlowNets)は、エージェントが一連の意思決定ステップを通じて複雑な構造を生成するためのポリシーを学ぶ確率的サンプルの新たなファミリーである。
本研究では,GFlowNetの分散パラダイムを採用し,各フロー関数を分散化し,学習中により情報的な学習信号を提供する。
GFlowNet学習アルゴリズムは,リスク不確実性のあるシナリオを扱う上で不可欠な,リスクに敏感なポリシーを学習することができる。
論文 参考訳(メタデータ) (2023-02-11T22:06:17Z) - Generative Augmented Flow Networks [88.50647244459009]
GFlowNetsに中間報酬を組み込むためにGAFlowNets(Generative Augmented Flow Networks)を提案する。
GAFlowNetsは、エッジベースとステートベース固有の報酬を共同で活用して、探索を改善することができる。
論文 参考訳(メタデータ) (2022-10-07T03:33:56Z) - A Complex Network based Graph Embedding Method for Link Prediction [0.0]
本稿では,人気相似性と地域アトラクションのパラダイムに基づく新しいグラフ埋め込み手法を提案する。
実験結果から,提案手法は最先端のグラフ埋め込みアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-11T14:46:38Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - A Light Heterogeneous Graph Collaborative Filtering Model using Textual
Information [16.73333758538986]
我々は,高度自然言語処理(NLP)モデルを用いて,関連性があり,アクセスしやすいテキスト情報を利用する。
ヘテロジニアスグラフ上のRGCN(RGCN,リレーショナルグラフ畳み込みネットワーク)協調フィルタリング手法を提案する。
論文 参考訳(メタデータ) (2020-10-04T11:10:37Z) - Active Learning on Attributed Graphs via Graph Cognizant Logistic
Regression and Preemptive Query Generation [37.742218733235084]
本稿では,属性グラフにおけるノード分類処理のための新しいグラフベース能動学習アルゴリズムを提案する。
提案アルゴリズムは,線形化グラフ畳み込みニューラルネットワーク(GCN)と等価なグラフ認識ロジスティック回帰を用いて,予測フェーズの誤差低減を最大化する。
5つの公開ベンチマークデータセットで実験を行い、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-07-09T18:00:53Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
私たちは、一般的な埋め込みアプローチのセットに対して、アプリケーション指向の視点を提供します。
実世界のグラフ特性に関する表現力を評価する。
GRLアプローチは現実のシナリオでは定義が困難であることが示唆された。
論文 参考訳(メタデータ) (2020-06-18T03:19:43Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。