論文の概要: MAC, a novel stochastic optimization method
- arxiv url: http://arxiv.org/abs/2304.12248v1
- Date: Fri, 14 Apr 2023 14:49:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-30 07:40:19.043771
- Title: MAC, a novel stochastic optimization method
- Title(参考訳): mac, 確率最適化法
- Authors: Attila L\'aszl\'o Nagy, Goitom Simret Kidane, Tam\'as Tur\'anyi, and
J\'anos T\'oth
- Abstract要約: MAC法は、複数のランダムな点における目的関数の計算に基づいている。
経験的期待値は、問題の最適値に収束することが証明される。
MAC法は2つのテスト関数をフェールさせ、他の4つのテスト関数に対して不正確な結果を与えた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A novel stochastic optimization method called MAC was suggested. The method
is based on the calculation of the objective function at several random points
and then an empirical expected value and an empirical covariance matrix are
calculated. The empirical expected value is proven to converge to the optimum
value of the problem. The MAC algorithm was encoded in Matlab and the code was
tested on 20 test problems. Its performance was compared with those of the
interior point method (Matlab name: fmincon), simplex, pattern search (PS),
simulated annealing (SA), particle swarm optimization (PSO), and genetic
algorithm (GA) methods. The MAC method failed two test functions and provided
inaccurate results on four other test functions. However, it provided accurate
results and required much less CPU time than the widely used optimization
methods on the other 14 test functions.
- Abstract(参考訳): MACと呼ばれる新しい確率最適化法が提案された。
この方法は、複数のランダム点における目的関数の計算に基づいて、経験的期待値と経験的共分散行列を算出する。
経験的期待値は、問題の最適値に収束することが証明される。
MACアルゴリズムはMatlabでエンコードされ、コードは20のテスト問題でテストされた。
その性能は、内部点法(マトラブ名:fmincon)、単純点法、パターン探索(PS)、模擬熱処理(SA)、粒子群最適化(PSO)、遺伝的アルゴリズム(GA)法と比較された。
MAC法は2つのテスト関数に失敗し、他の4つのテスト関数に対して不正確な結果を与えた。
しかし、これは他の14のテスト関数で広く使われている最適化手法よりも正確な結果をもたらし、cpu時間を大幅に削減した。
関連論文リスト
- An Adaptive Re-evaluation Method for Evolution Strategy under Additive Noise [3.92625489118339]
本稿では,加法的なガウスホワイトノイズによる関数値の最適再評価数を適応的に選択する手法を提案する。
実験では,CMA-ESのノイズハンドリング手法を人工的なテスト関数の集合上で実験的に比較した。
論文 参考訳(メタデータ) (2024-09-25T09:10:21Z) - Closing the Computational-Query Depth Gap in Parallel Stochastic Convex Optimization [26.36906884097317]
我々は,リプシッツ,凸関数を次数次オラクルで最小化するための新しい並列アルゴリズムを開発した。
その結果,最もよく知られた問合せ深度と並列アルゴリズムの最もよく知られた計算深度とのギャップを埋めることができた。
論文 参考訳(メタデータ) (2024-06-11T15:41:48Z) - A Multi-objective Newton Optimization Algorithm for Hyper-Parameter
Search [0.0]
このアルゴリズムを用いて畳み込みニューラルネットワークの多クラス物体検出問題に対する最適確率しきい値(8パラメータのベクトル)を探索する。
このアルゴリズムは、デフォルト値0.5に比べて総合的に高い真正(TP)と低い偽正(FP)率を生成する。
論文 参考訳(メタデータ) (2024-01-07T21:12:34Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Nystrom Method for Accurate and Scalable Implicit Differentiation [25.29277451838466]
我々は,Nystrom法が他の手法と同等あるいは優れた性能を連続的に達成していることを示す。
提案手法は数値的な不安定さを回避し,反復を伴わない行列演算で効率的に計算できる。
論文 参考訳(メタデータ) (2023-02-20T02:37:26Z) - Efficient computation of the Knowledge Gradient for Bayesian
Optimization [1.0497128347190048]
One-shot Hybrid KGは、これまで提案されていたアイデアをいくつか組み合わせた新しいアプローチであり、計算が安価で、強力で効率的である。
すべての実験はBOTorchで実施され、同等または改善された性能で計算オーバーヘッドを劇的に削減した。
論文 参考訳(メタデータ) (2022-09-30T10:39:38Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
多くの現実世界では、T関数の評価の予算を考えると、高価なブラックボックス関数 f の性質を推測したい。
本稿では,アルゴリズムの出力に対して相互情報を最大化するクエリを逐次選択する手法InfoBAXを提案する。
これらの問題に対してInfoBAXは、元のアルゴリズムで要求されるより500倍少ないクエリをfに使用する。
論文 参考訳(メタデータ) (2021-04-19T17:22:11Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
無限水平マルコフ決定過程(MDP)における最適政策学習の問題を考える。
リプシッツ連続関数を用いた凸プログラミング問題に対してミラー・ディクセントの変種が提案されている。
このアルゴリズムを一般の場合において解析し,提案手法の動作中に誤差を蓄積しない収束率の推定値を得る。
論文 参考訳(メタデータ) (2021-02-27T19:28:39Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
強凸関数のゼロ次最適化問題について検討する。
予測勾配降下アルゴリズムのランダム化近似を考察する。
その結果,0次アルゴリズムはサンプルの複雑性や問題パラメータの点でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-14T10:42:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。