論文の概要: Retinal Vessel Segmentation via a Multi-resolution Contextual Network
and Adversarial Learning
- arxiv url: http://arxiv.org/abs/2304.12856v1
- Date: Tue, 25 Apr 2023 14:27:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-26 20:25:12.142327
- Title: Retinal Vessel Segmentation via a Multi-resolution Contextual Network
and Adversarial Learning
- Title(参考訳): マルチレゾリューション・コンテクストネットワークによる網膜血管セグメンテーションと逆学習
- Authors: Tariq M. Khan, Syed S. Naqvi, Antonio Robles-Kelly, Imran Razzak
- Abstract要約: 本稿では,意味的に異なる特徴間のコンテキスト依存を学習するためのマルチレゾリューション・コンテクスト・ネットワーク(MRC-Net)を提案する。
本手法は,DRIVE,STARE,CHASEの3つのベンチマークデータセットを用いて評価を行った。
- 参考スコア(独自算出の注目度): 4.776465250559035
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Timely and affordable computer-aided diagnosis of retinal diseases is pivotal
in precluding blindness. Accurate retinal vessel segmentation plays an
important role in disease progression and diagnosis of such vision-threatening
diseases. To this end, we propose a Multi-resolution Contextual Network
(MRC-Net) that addresses these issues by extracting multi-scale features to
learn contextual dependencies between semantically different features and using
bi-directional recurrent learning to model former-latter and latter-former
dependencies. Another key idea is training in adversarial settings for
foreground segmentation improvement through optimization of the region-based
scores. This novel strategy boosts the performance of the segmentation network
in terms of the Dice score (and correspondingly Jaccard index) while keeping
the number of trainable parameters comparatively low. We have evaluated our
method on three benchmark datasets, including DRIVE, STARE, and CHASE,
demonstrating its superior performance as compared with competitive approaches
elsewhere in the literature.
- Abstract(参考訳): 網膜疾患のタイムリーで手頃なコンピュータ支援診断は、視覚障害の予防に不可欠である。
正確な網膜血管セグメンテーションは、このような視力低下疾患の進行と診断において重要な役割を果たす。
そこで本稿では,意味的に異なる特徴間のコンテキスト依存を学習するためのマルチスケール特徴を抽出し,複数方向のリカレント学習を用いて従来と後者の依存関係をモデル化することにより,これらの問題に対処する多分解コンテキストネットワーク(MRC-Net)を提案する。
もう1つの鍵となるアイデアは、地域ベースのスコアの最適化による前景セグメンテーション改善のための敵の設定のトレーニングである。
この新たな戦略は、訓練可能なパラメータの数を比較的低く保ちながら、サイススコア(およびそれに対応するジャカードインデックス)の観点からセグメンテーションネットワークの性能を高める。
我々は,drive,stare, chaseの3つのベンチマークデータセットを用いて本手法を評価し,他の文献と比較して優れた性能を示す。
関連論文リスト
- ICH-SCNet: Intracerebral Hemorrhage Segmentation and Prognosis Classification Network Using CLIP-guided SAM mechanism [12.469269425813607]
脳内出血 (ICH) は脳卒中で最も致命的なサブタイプであり, 障害の発生頻度が高いことが特徴である。
既存のアプローチでは、これらの2つのタスクを独立して処理し、主にデータのみにフォーカスする。
本稿では,ICHセグメンテーションと予後分類の両方のために設計されたマルチタスクネットワークICH-SCNetを提案する。
論文 参考訳(メタデータ) (2024-11-07T12:34:25Z) - AD-Net: Attention-based dilated convolutional residual network with guided decoder for robust skin lesion segmentation [0.0]
本研究では,拡張畳み込み残差ネットワークを用いたロバストなアプローチを提案する。
注意に基づく空間特徴拡張ブロック(ASFEB)を搭載し、ガイド付きデコーダ戦略を採用している。
提案したAD-Netの有効性を,4つの公開ベンチマークデータセットを用いて評価した。
論文 参考訳(メタデータ) (2024-09-09T08:21:17Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
この論文は網膜血管セグメンテーションの課題に焦点を当てている。
深層学習に基づく医用画像セグメンテーションアプローチの広範な文献レビューを提供する。
効率的でシンプルな多視点学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-02T06:31:08Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
本研究は、深層学習とマルチセットニューロンのアプローチの比較実験を開発する。
ディープラーニングアプローチは、画像セグメンテーションの実行の可能性を確認した。
代替のマルチセット手法では、計算資源をほとんど必要とせずに精度を向上することができた。
論文 参考訳(メタデータ) (2023-07-19T16:42:52Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
フェデレートラーニング(FL)は医用画像解析に広く用いられている。
FLのパフォーマンスは、多発性硬化症(MS)病変セグメンテーションタスクに制限される。
2つの効果的な再重み付け機構によるFLMS病変分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-03T14:06:03Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
画像とテキストを共同で表現するマルチモーダル表現学習手法が提案されている。
これらの手法は,大規模マルチモーダル事前学習から高レベルな意味情報を取得することにより,優れた性能を実現する。
そこで本稿では,非バイアスのDense Contrastive Visual-Linguistic Pretrainingを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:20:13Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Contextual Information Enhanced Convolutional Neural Networks for
Retinal Vessel Segmentation in Color Fundus Images [0.0]
自動網膜血管セグメンテーションシステムは、臨床診断及び眼科研究を効果的に促進することができる。
ディープラーニングベースの手法が提案され、いくつかのカスタマイズされたモジュールが有名なエンコーダデコーダアーキテクチャU-netに統合されている。
その結果,提案手法は先行技術よりも優れ,感性/リコール,F1スコア,MCCの最先端性能を実現している。
論文 参考訳(メタデータ) (2021-03-25T06:10:47Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
関連するアルゴリズムの性能は、マルチモーダル情報の適切な融合によって大きく影響を受ける。
We present the Max-Fusion U-Net that achieve a improve pathology segmentation performance。
マルチシーケンスCMRデータセットを併用したMyoPS(Myocardial pathology segmentation)を用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2020-09-05T17:24:23Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
本稿では,皮膚病変のセグメンテーションを改善するために,Dual Objective Networks (DONet) という,シンプルで効果的なフレームワークを提案する。
我々のDONetは2つの対称デコーダを採用し、異なる目標に近づくための異なる予測を生成する。
皮膚内視鏡画像における多種多様な病変のスケールと形状の課題に対処するために,再帰的コンテキスト符号化モジュール(RCEM)を提案する。
論文 参考訳(メタデータ) (2020-08-19T06:02:46Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。