論文の概要: ICH-SCNet: Intracerebral Hemorrhage Segmentation and Prognosis Classification Network Using CLIP-guided SAM mechanism
- arxiv url: http://arxiv.org/abs/2411.04656v1
- Date: Thu, 07 Nov 2024 12:34:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:38:36.541138
- Title: ICH-SCNet: Intracerebral Hemorrhage Segmentation and Prognosis Classification Network Using CLIP-guided SAM mechanism
- Title(参考訳): ICH-SCNet:CLIP誘導SAMによる脳内出血分節と予後分類網
- Authors: Xinlei Yu, Ahmed Elazab, Ruiquan Ge, Hui Jin, Xinchen Jiang, Gangyong Jia, Qing Wu, Qinglei Shi, Changmiao Wang,
- Abstract要約: 脳内出血 (ICH) は脳卒中で最も致命的なサブタイプであり, 障害の発生頻度が高いことが特徴である。
既存のアプローチでは、これらの2つのタスクを独立して処理し、主にデータのみにフォーカスする。
本稿では,ICHセグメンテーションと予後分類の両方のために設計されたマルチタスクネットワークICH-SCNetを提案する。
- 参考スコア(独自算出の注目度): 12.469269425813607
- License:
- Abstract: Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke and is characterized by a high incidence of disability. Accurate segmentation of the ICH region and prognosis prediction are critically important for developing and refining treatment plans for post-ICH patients. However, existing approaches address these two tasks independently and predominantly focus on imaging data alone, thereby neglecting the intrinsic correlation between the tasks and modalities. This paper introduces a multi-task network, ICH-SCNet, designed for both ICH segmentation and prognosis classification. Specifically, we integrate a SAM-CLIP cross-modal interaction mechanism that combines medical text and segmentation auxiliary information with neuroimaging data to enhance cross-modal feature recognition. Additionally, we develop an effective feature fusion module and a multi-task loss function to improve performance further. Extensive experiments on an ICH dataset reveal that our approach surpasses other state-of-the-art methods. It excels in the overall performance of classification tasks and outperforms competing models in all segmentation task metrics.
- Abstract(参考訳): 脳内出血 (ICH) は脳卒中で最も致命的なサブタイプであり, 障害の発生頻度が高いことが特徴である。
ICH領域の正確なセグメンテーションと予後予測は、ICH後患者の治療計画の策定と改善に極めて重要である。
しかし、既存のアプローチでは、これらの2つのタスクを独立に処理し、主にデータのみに焦点を合わせ、タスクとモダリティの本質的な相関を無視する。
本稿では,ICHセグメンテーションと予後分類の両方のために設計されたマルチタスクネットワークICH-SCNetを提案する。
具体的には、医療用テキストとセグメンテーション補助情報とニューロイメージングデータを組み合わせたSAM-CLIPクロスモーダルインタラクション機構を統合し、クロスモーダル特徴認識を強化する。
さらに,有効機能融合モジュールとマルチタスク損失関数を開発し,さらなる性能向上を図る。
ICHデータセットの大規模な実験により、我々のアプローチが他の最先端の手法を超越していることが判明した。
分類タスクの全体的なパフォーマンスを上回り、全てのセグメンテーションタスクのメトリクスにおいて競合するモデルを上回っます。
関連論文リスト
- Effective Segmentation of Post-Treatment Gliomas Using Simple Approaches: Artificial Sequence Generation and Ensemble Models [7.352034931666381]
本稿では,深層学習手法のセグメンテーション性能を高めるための2つの手法を提案する。
まず、利用可能なMRIシーケンスの単純な線形結合に基づく追加入力を組み込む。
第二に、モデルのバッテリの寄与を測るために様々なアンサンブル手法を用いる。
論文 参考訳(メタデータ) (2024-09-12T15:34:31Z) - Robust Semi-supervised Multimodal Medical Image Segmentation via Cross Modality Collaboration [21.97457095780378]
本稿では,ラベル付きデータの不足やモダリティの不一致に頑健な,新しい半教師付きマルチモーダルセグメンテーションフレームワークを提案する。
本フレームワークでは,各モダリティに固有の,モダリティに依存しない知識を蒸留する,新たなモダリティ協調戦略を採用している。
また、対照的な一貫した学習を統合して解剖学的構造を規制し、ラベルのないデータに対する解剖学的予測アライメントを容易にする。
論文 参考訳(メタデータ) (2024-08-14T07:34:12Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Masked Contrastive Reconstruction for Cross-modal Medical Image-Report
Retrieval [3.5314225883644945]
クロスモーダル・メディカル・リポート検索は臨床診断や様々な医療生成タスクにおいて重要な役割を担っている。
本稿では,マスク付きデータを両タスクの唯一の入力として利用するMasked Contrastive and Reconstruction (MCR) という効率的なフレームワークを提案する。
これにより、タスク接続が強化され、情報の干渉や競合が軽減されると同時に、必要なGPUメモリとトレーニング時間を大幅に短縮する。
論文 参考訳(メタデータ) (2023-12-26T01:14:10Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
医用画像の構造を分割するマルチスケールクロススーパービジョンコントラスト学習フレームワークを開発した。
提案手法は,頑健な特徴表現を抽出するために,地上構造と横断予測ラベルに基づくマルチスケール特徴と対比する。
Diceでは最先端の半教師あり手法を3.0%以上上回っている。
論文 参考訳(メタデータ) (2023-06-25T16:55:32Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Retinal Vessel Segmentation via a Multi-resolution Contextual Network
and Adversarial Learning [4.776465250559035]
本稿では,意味的に異なる特徴間のコンテキスト依存を学習するためのマルチレゾリューション・コンテクスト・ネットワーク(MRC-Net)を提案する。
本手法は,DRIVE,STARE,CHASEの3つのベンチマークデータセットを用いて評価を行った。
論文 参考訳(メタデータ) (2023-04-25T14:27:34Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
フェデレートラーニング(FL)は医用画像解析に広く用いられている。
FLのパフォーマンスは、多発性硬化症(MS)病変セグメンテーションタスクに制限される。
2つの効果的な再重み付け機構によるFLMS病変分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-03T14:06:03Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
本稿では,あるモダリティから学習した事前知識を活用し,別のモダリティにおけるセグメンテーション性能を向上させることを目的とする。
モーダル共有知識を徹底的に活用する新しい相互知識蒸留法を提案する。
MMWHS 2017, MMWHS 2017 を用いた多クラス心筋セグメンテーション実験の結果, CT セグメンテーションに大きな改善が得られた。
論文 参考訳(メタデータ) (2020-10-04T10:25:13Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。