論文の概要: Unstructured and structured data: Can we have the best of both worlds
with large language models?
- arxiv url: http://arxiv.org/abs/2304.13010v2
- Date: Wed, 5 Jul 2023 21:33:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 17:40:36.151301
- Title: Unstructured and structured data: Can we have the best of both worlds
with large language models?
- Title(参考訳): 非構造化データと構造化データ: 大きな言語モデルを持つ両方の世界のベストを得られるか?
- Authors: Wang-Chiew Tan
- Abstract要約: 本稿では,大規模言語モデルを用いて非構造化データと構造化データの両方を問合せする可能性について考察する。
また、両タイプのデータに対して質問応答システムを構築することに関する研究課題についても概説している。
- 参考スコア(独自算出の注目度): 18.06824455388986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an opinion on the potential of using large language
models to query on both unstructured and structured data. It also outlines some
research challenges related to the topic of building question-answering systems
for both types of data.
- Abstract(参考訳): 本稿では,大規模言語モデルを用いて非構造化データと構造化データの両方を問合せする可能性について考察する。
また,両タイプのデータを対象とした質問応答システムの構築に関する研究課題についても概説する。
関連論文リスト
- Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction [23.47150047875133]
文書解析は、構造化されていない文書と半構造化された文書を機械可読データに変換するのに不可欠である。
文書解析は知識ベースの構築とトレーニングデータ生成において不可欠である。
本稿では,モジュール型文書解析システムと複雑なレイアウト処理における視覚言語モデルが直面する課題について論じる。
論文 参考訳(メタデータ) (2024-10-28T16:11:35Z) - Exploring the Role of Reasoning Structures for Constructing Proofs in Multi-Step Natural Language Reasoning with Large Language Models [30.09120709652445]
本稿では,現在最先端のジェネラリスト LLM がいくつかの例でこれらの構造を活用でき,テキスト・コンテクスト・ラーニングによる証明構造をより良く構築できるかどうかという,焦点を絞った研究に焦点をあてる。
論文 参考訳(メタデータ) (2024-10-11T00:45:50Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
大規模言語モデル(LLM)は、様々な領域でますます重要になっている。
BabelBenchは、コード実行によるマルチモーダルなマルチ構造化データ管理におけるLLMの熟練度を評価する革新的なベンチマークフレームワークである。
BabelBenchの実験結果から,ChatGPT 4のような最先端モデルでさえ,大幅な改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2024-10-01T15:11:24Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - dIR -- Discrete Information Retrieval: Conversational Search over
Unstructured (and Structured) Data with Large Language Models [0.16060477887377675]
本稿では,自由テキストと構造化知識の両方を問う統一インターフェースとして,dIR,disrete Information Retrievalを提案する。
我々は、独自の質問/回答データセットを用いて、我々のアプローチを検証し、dIRがフリーテキスト上で全く新しいクエリーのクラスを作成できると結論付けた。
論文 参考訳(メタデータ) (2023-12-20T18:41:44Z) - Bridging the Gap: Deciphering Tabular Data Using Large Language Model [4.711941969101732]
この研究は、テーブルベースの質問応答タスクへの大規模言語モデルの初めての応用である。
拡張言語モデルとのシームレスな統合のために,テーブルのシリアライズに特有なモジュールを設計しました。
論文 参考訳(メタデータ) (2023-08-23T03:38:21Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
トランスフォーマーベースの言語モデルは効率的だが複雑であり、内部動作を理解することは大きな課題である。
本稿では,長文を生成可能な階層規則を生成する合成CFGのファミリーを紹介する。
我々は、GPTのような生成モデルがこのCFG言語を正確に学習し、それに基づいて文を生成することを実証する。
論文 参考訳(メタデータ) (2023-05-23T04:28:16Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
我々は,構造化データに基づく質問応答タスクの解法として,emphIterative Reading-then-Reasoning(IRR)アプローチを開発した。
提案手法はChatGPTの性能を大幅に向上させ,全データの教師付きベースラインに対して同等のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-16T17:45:23Z) - Model Criticism for Long-Form Text Generation [113.13900836015122]
我々は,テキストの高レベル構造を評価するために,潜在空間におけるモデル批判という統計ツールを適用した。
我々は,コヒーレンス,コア,トピックスという,ハイレベルな談話の3つの代表的な側面について実験を行った。
トランスフォーマーベースの言語モデルでは、トピック構造をキャプチャできるが、構造コヒーレンスやモデリングコアスを維持するのが難しくなる。
論文 参考訳(メタデータ) (2022-10-16T04:35:58Z) - Does Structure Matter? Leveraging Data-to-Text Generation for Answering
Complex Information Needs [3.5331191621809794]
データ・テキスト・ジェネレーションの観点から,生成モデルの利用を想定する。
中間計画を生成することで回答を構造化することを目的とした,コンテンツ選択計画パイプラインの利用を提案する。
TREC Complex Answer Retrieval (CAR) データセットを用いて実験評価を行った。
論文 参考訳(メタデータ) (2021-12-08T15:51:27Z) - CateCom: a practical data-centric approach to categorization of
computational models [77.34726150561087]
本稿では,物理モデルとデータ駆動型計算モデルのランドスケープを整理する取り組みについて述べる。
オブジェクト指向設計の概念を適用し、オープンソース協調フレームワークの基礎を概説する。
論文 参考訳(メタデータ) (2021-09-28T02:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。