論文の概要: Surrogate Assisted Generation of Human-Robot Interaction Scenarios
- arxiv url: http://arxiv.org/abs/2304.13787v4
- Date: Tue, 31 Oct 2023 22:42:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 17:39:54.275862
- Title: Surrogate Assisted Generation of Human-Robot Interaction Scenarios
- Title(参考訳): 人-ロボットインタラクションシナリオの生成を支援するサロゲート
- Authors: Varun Bhatt, Heramb Nemlekar, Matthew C. Fontaine, Bryon Tjanaka,
Hejia Zhang, Ya-Chuan Hsu, Stefanos Nikolaidis
- Abstract要約: 本研究では,サロゲート支援シナリオ生成が,課題シナリオの多様なデータセットを効率的に合成することを示す。
これらの失敗は実世界の相互作用において再現可能であることを実証する。
- 参考スコア(独自算出の注目度): 14.548073522259248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As human-robot interaction (HRI) systems advance, so does the difficulty of
evaluating and understanding the strengths and limitations of these systems in
different environments and with different users. To this end, previous methods
have algorithmically generated diverse scenarios that reveal system failures in
a shared control teleoperation task. However, these methods require directly
evaluating generated scenarios by simulating robot policies and human actions.
The computational cost of these evaluations limits their applicability in more
complex domains. Thus, we propose augmenting scenario generation systems with
surrogate models that predict both human and robot behaviors. In the shared
control teleoperation domain and a more complex shared workspace collaboration
task, we show that surrogate assisted scenario generation efficiently
synthesizes diverse datasets of challenging scenarios. We demonstrate that
these failures are reproducible in real-world interactions.
- Abstract(参考訳): HRI(Human-robot Interaction)システムが進歩するにつれて、異なる環境と異なるユーザでこれらのシステムの強みや制限を評価し理解することが困難になる。
この目的のために、従来の手法は、共有制御遠隔操作タスクにおけるシステム障害を明らかにする様々なシナリオをアルゴリズムで生成している。
しかし,これらの手法では,ロボットのポリシーや人間行動のシミュレーションによって生成シナリオを直接評価する必要がある。
これらの評価の計算コストは、より複雑な領域での適用性を制限する。
そこで本研究では,人間とロボットの行動を予測するサロゲートモデルを用いたシナリオ生成システムを提案する。
共有制御遠隔操作ドメインとより複雑な共有ワークスペース協調タスクにおいて,surrogate assisted scenario generation が課題シナリオの多様なデータセットを効率的に合成することを示す。
これらの失敗は実世界の相互作用において再現可能であることを示す。
関連論文リスト
- Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial Interaction Scenarios [3.8625803348911774]
ロボット空間相互作用における因果発見のためのROSベースのフレームワークであるROS-Causalの実験的検討を行った。
データ収集中にロボットが因果モデルを直接抽出する方法を示す。
シミュレーションから生成されたオンライン因果関係モデルは、実験結果と一致している。
論文 参考訳(メタデータ) (2024-06-07T14:20:30Z) - Evaluating Real-World Robot Manipulation Policies in Simulation [91.55267186958892]
実環境と模擬環境の制御と視覚的格差は、信頼性のある模擬評価の鍵となる課題である。
実環境に完全忠実なデジタル双生児を作らなくても、これらのギャップを軽減できる手法を提案する。
シミュレーション環境の集合体であるSIMPLERを作成した。
論文 参考訳(メタデータ) (2024-05-09T17:30:16Z) - Generalizable Human-Robot Collaborative Assembly Using Imitation
Learning and Force Control [17.270360447188196]
本稿では,実演から学び,ポーズ推定を用いたロボット協調組立システムを提案する。
提案システムでは, ロボット組立シナリオにおいて, 物理的6DoFマニピュレータを用いて実験を行った。
論文 参考訳(メタデータ) (2022-12-02T20:35:55Z) - CLAS: Coordinating Multi-Robot Manipulation with Central Latent Action
Spaces [9.578169216444813]
本稿では,異なるエージェント間で共有される学習された潜在行動空間を通じて,マルチロボット操作を協調する手法を提案する。
シミュレーションされたマルチロボット操作タスクにおいて本手法を検証し,サンプル効率と学習性能の観点から,従来のベースラインよりも改善したことを示す。
論文 参考訳(メタデータ) (2022-11-28T23:20:47Z) - Causal Discovery of Dynamic Models for Predicting Human Spatial
Interactions [5.742409080817885]
本稿では,人間とロボットの空間的相互作用をモデル化するための因果探索手法を提案する。
最先端の因果探索アルゴリズムを初めて活用するために、新しい方法と実用的な解決策について議論する。
論文 参考訳(メタデータ) (2022-10-29T08:56:48Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
6-DoF操作設定に合わせたデータ収集システムを構築します。
システムによって収集された新しいデータに基づいて,ポリシーを反復的にトレーニングするアルゴリズムを開発した。
介入型システムで収集したデータに基づいて訓練されたエージェントと、非介入型デモ参加者が収集した同等数のサンプルで訓練されたアルゴリズムを上回るエージェントを実証する。
論文 参考訳(メタデータ) (2020-12-12T05:30:35Z) - Collaborative Multi-Robot Systems for Search and Rescue: Coordination
and Perception [16.850204497272205]
マルチロボットシステムは、捜索救助員の効率を大幅に改善する可能性がある。
本稿では,マルチロボットSARサポートに対する既存のアプローチをレビューし,分析する。
これらのアルゴリズムは、様々な種類のロボットが異なるSAR環境で遭遇する様々な課題と制約の文脈に置かれる。
論文 参考訳(メタデータ) (2020-08-28T12:28:32Z) - From Simulation to Real World Maneuver Execution using Deep
Reinforcement Learning [69.23334811890919]
深層強化学習(Deep Reinforcement Learning)は、さまざまな分野における多くの制御タスクを解決できることが証明されている。
これは主に、シミュレーションデータと実世界のデータ間のドメイン適応の欠如と、トレインデータセットとテストデータセットの区別の欠如による。
本稿では,エージェントが同時に訓練される複数の環境に基づくシステムを提案する。
論文 参考訳(メタデータ) (2020-05-13T14:22:20Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。