論文の概要: Segment Anything Model for Medical Images?
- arxiv url: http://arxiv.org/abs/2304.14660v2
- Date: Mon, 1 May 2023 09:27:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 10:33:48.239903
- Title: Segment Anything Model for Medical Images?
- Title(参考訳): 医用画像のセグメントモデルについて
- Authors: Yuhao Huang, Xin Yang, Lian Liu, Han Zhou, Ao Chang, Xinrui Zhou, Rusi
Chen, Junxuan Yu, Jiongquan Chen, Chaoyu Chen, Haozhe Chi, Xindi Hu,
Deng-Ping Fan, Fajin Dong, Dong Ni
- Abstract要約: Segment Anything Model (SAM) は一般的な画像分割のための最初の基礎モデルである。
16のモダリティ、68のオブジェクト、553Kのスライスを持つ大規模な医療セグメントデータセットを構築しました。
大規模な実験では、SAMは特定の対象やモダリティにおいて顕著な性能を示すが、不完全なことや、他の状況では完全に失敗することさえある。
- 参考スコア(独自算出の注目度): 26.210436716164963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Segment Anything Model (SAM) is the first foundation model for general
image segmentation. It designed a novel promotable segmentation task, ensuring
zero-shot image segmentation using the pre-trained model via two main modes
including automatic everything and manual prompt. SAM has achieved impressive
results on various natural image segmentation tasks. However, medical image
segmentation (MIS) is more challenging due to the complex modalities, fine
anatomical structures, uncertain and complex object boundaries, and wide-range
object scales. Meanwhile, zero-shot and efficient MIS can well reduce the
annotation time and boost the development of medical image analysis. Hence, SAM
seems to be a potential tool and its performance on large medical datasets
should be further validated. We collected and sorted 52 open-source datasets,
and built a large medical segmentation dataset with 16 modalities, 68 objects,
and 553K slices. We conducted a comprehensive analysis of different SAM testing
strategies on the so-called COSMOS 553K dataset. Extensive experiments validate
that SAM performs better with manual hints like points and boxes for object
perception in medical images, leading to better performance in prompt mode
compared to everything mode. Additionally, SAM shows remarkable performance in
some specific objects and modalities, but is imperfect or even totally fails in
other situations. Finally, we analyze the influence of different factors (e.g.,
the Fourier-based boundary complexity and size of the segmented objects) on
SAM's segmentation performance. Extensive experiments validate that SAM's
zero-shot segmentation capability is not sufficient to ensure its direct
application to the MIS.
- Abstract(参考訳): Segment Anything Model (SAM) は一般画像分割のための最初の基礎モデルである。
新たなプロモータブルセグメンテーションタスクを設計し、オートマチックオールと手動プロンプトを含む2つのメインモードを通じて、事前訓練されたモデルを使用してゼロショットイメージセグメンテーションを保証した。
SAMは様々な自然な画像分割タスクにおいて印象的な結果を得た。
しかし、複雑なモダリティ、微細な解剖学的構造、不確実で複雑な物体の境界、広範囲の物体スケールにより、医療画像セグメンテーション(MIS)はより困難である。
一方、ゼロショットかつ効率的なMISは、アノテーション時間を大幅に短縮し、医用画像解析の開発を促進することができる。
したがってSAMは潜在的なツールであり、大規模な医療データセットのパフォーマンスをさらに検証する必要がある。
52のオープンソースデータセットを収集、ソートし、16のモダリティ、68のオブジェクト、553Kスライスを備えた大規模な医療セグメントデータセットを構築しました。
いわゆるCOSMOS 553Kデータセット上で,異なるSAMテスト戦略の包括的な分析を行った。
広範な実験により、SAMは医療画像の物体知覚のためのポイントやボックスなどの手動のヒントで、あらゆるモードと比較して、即時モードでのパフォーマンスが向上することが検証された。
加えて、SAMは特定のオブジェクトやモダリティにおいて顕著なパフォーマンスを示すが、不完全あるいは他の状況では完全に失敗する。
最後に,異なる因子(例えば,セグメンテーション対象のフーリエに基づく境界複雑性とサイズ)がSAMのセグメンテーション性能に与える影響を分析する。
広範な実験によりSAMのゼロショットセグメンテーション能力はMISに直接適用するには不十分であることが確認された。
関連論文リスト
- SAM-UNet:Enhancing Zero-Shot Segmentation of SAM for Universal Medical Images [40.4422523499489]
Segment Anything Model (SAM) は、様々な自然画像のセグメンテーションタスクにおいて印象的な性能を示した。
本稿では,U-Netを元のSAMに組み込んだ新たな基盤モデルSAMUNetを提案する。
我々は,SA-Med2D-16MでSAM-UNetをトレーニングした。
論文 参考訳(メタデータ) (2024-08-19T11:01:00Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) は、強力なセグメンテーションと一般化機能を提供する視覚的基本モデルとして提案されている。
実物検出のためのMDSAM(Multi-scale and Detail-enhanced SAM)を提案する。
実験により,複数のSODデータセット上でのモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-08-08T09:09:37Z) - Segment Anything without Supervision [65.93211374889196]
高速かつ自動的な全画像分割のためのUnsupervised SAM(UnSAM)を提案する。
UnSAMは、視覚シーンの階層構造を「発見」するために、分割・コンカ戦略を利用する。
教師付きSAMは自己教師付きラベルの恩恵を受けることができることを示す。
論文 参考訳(メタデータ) (2024-06-28T17:47:32Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
そこで本研究では,海洋生物のセグメンテーションのためのMAS-SAMという新しい特徴学習フレームワークを提案する。
本手法により,グローバルな文脈的手がかりからよりリッチな海洋情報を抽出し,よりきめ細かな局部的詳細を抽出できる。
論文 参考訳(メタデータ) (2024-04-24T07:38:14Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - SAM-Med2D [34.82072231983896]
我々はSAM-Med2Dを医療用2次元画像に適用する最も包括的な研究である。
まず、公開およびプライベートデータセットから約4.6Mの画像と19.7Mマスクを収集し、キュレートします。
元のSAMのエンコーダとデコーダを微調整して、良好な性能のSAM-Med2Dを得る。
論文 参考訳(メタデータ) (2023-08-30T17:59:02Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
我々は,大規模画像分割モデルであるSAM(Segment Anything Model)に基づいて,医用画像分割のための大規模モデルをカスタマイズする新たな研究パラダイムを探求する。
SAMedは、SAMイメージエンコーダにローランクベース(LoRA)ファインタニング戦略を適用し、ラベル付き医用画像セグメンテーションデータセットにプロンプトエンコーダとマスクデコーダを併用する。
我々の訓練されたSAMedモデルは,最先端の手法に匹敵する医用画像のセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-04-26T19:05:34Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) は、ユーザ定義オブジェクトをインタラクティブな方法でセグメント化する基礎モデルである。
SAMの医用画像の分類能力について,各種のモダリティと解剖から,19の医用画像データセットの集合体を用いて評価した。
論文 参考訳(メタデータ) (2023-04-20T17:50:18Z) - Computer-Vision Benchmark Segment-Anything Model (SAM) in Medical
Images: Accuracy in 12 Datasets [1.6624933615451842]
SAM( segment-anything model)は、ベンチマークモデルとして、様々な自然画像をセグメント化するための普遍的なソリューションとして、将来性を示す。
SAMは、7,451人の被験者を含む12の公開医療画像セグメンテーションデータセットでテストされた。
SAMとDiceの重なり合いは、12の医用画像セグメンテーションデータセットの5つの医用画像ベースアルゴリズムよりも有意に低かった。
論文 参考訳(メタデータ) (2023-04-18T22:16:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。