論文の概要: ChatGPT -- a Blessing or a Curse for Undergraduate Computer Science
Students and Instructors?
- arxiv url: http://arxiv.org/abs/2304.14993v1
- Date: Fri, 28 Apr 2023 17:26:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-01 13:14:18.496970
- Title: ChatGPT -- a Blessing or a Curse for Undergraduate Computer Science
Students and Instructors?
- Title(参考訳): ChatGPT - コンピュータサイエンスの学生とインストラクターにとっての祝福か、それともカースか?
- Authors: Ishika Joshi, Ritvik Budhiraja, Harshal Dev, Jahnvi Kadia, M. Osama
Ataullah, Sayan Mitra, Dhruv Kumar, Harshal D. Akolekar
- Abstract要約: ChatGPTはOpenAIが開発したAI言語モデルである。
学生がChatGPTを活用すれば、家庭での課題や試験を完了し、真に知識を得ることなく良い成績を得られるのではないか、という懸念がある。
- 参考スコア(独自算出の注目度): 4.028617200233781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ChatGPT is an AI language model developed by OpenAI that can understand and
generate human-like text. It can be used for a variety of use cases such as
language generation, question answering, text summarization, chatbot
development, language translation, sentiment analysis, content creation,
personalization, text completion, and storytelling. While ChatGPT has garnered
significant positive attention, it has also generated a sense of apprehension
and uncertainty in academic circles. There is concern that students may
leverage ChatGPT to complete take-home assignments and exams and obtain
favorable grades without genuinely acquiring knowledge. This paper adopts a
quantitative approach to demonstrate ChatGPT's high degree of unreliability in
answering a diverse range of questions pertaining to topics in undergraduate
computer science. Our analysis shows that students may risk self-sabotage by
blindly depending on ChatGPT to complete assignments and exams. We build upon
this analysis to provide constructive recommendations to both students and
instructors.
- Abstract(参考訳): chatgptはopenaiが開発したai言語モデルで、人間のようなテキストを理解し、生成することができる。
言語生成、質問応答、テキスト要約、チャットボット開発、言語翻訳、感情分析、コンテンツ生成、パーソナライズ、テキスト補完、ストーリーテリングなど、さまざまなユースケースで使用することができる。
ChatGPTは大きな肯定的な注目を集めているが、学術界では理解と不確実性の感覚も生み出している。
学生はchatgptを利用して家庭での課題や試験を完了し、真に知識を得ることなく良い成績を得ることができるのではないかという懸念がある。
本稿では,学部生のコンピュータ科学における話題に関する多岐にわたる質問に対して,chatgptの信頼性の高まりを定量的に示す手法を提案する。
分析の結果,学生はチャットgptに依拠して自傷行為のリスクを負い,課題や試験を完遂する可能性が示唆された。
この分析に基づいて、学生とインストラクターの両方に建設的なレコメンデーションを提供する。
関連論文リスト
- ChatGPT in Research and Education: Exploring Benefits and Threats [1.9466452723529557]
ChatGPTはOpenAIが開発した強力な言語モデルである。
パーソナライズされたフィードバックを提供し、アクセシビリティを高め、対話的な会話を可能にし、授業の準備と評価を支援し、複雑な科目を教えるための新しい方法を導入する。
ChatGPTは従来の教育や研究システムにも挑戦している。
これらの課題には、オンライン試験の不正行為のリスク、学術的完全性を損なう可能性のある人間のようなテキストの生成、AIによって生成された情報の信頼性を評価することの難しさなどが含まれる。
論文 参考訳(メタデータ) (2024-11-05T05:29:00Z) - Integrating ChatGPT in a Computer Science Course: Students Perceptions
and Suggestions [0.0]
本経験報告では,ChatGPTをコンピュータサイエンス科目に統合するための学生の認識と提案について考察する。
計算機科学科目では,ChatGPTを用いて慎重にバランスをとることが重要である。
論文 参考訳(メタデータ) (2023-12-22T10:48:34Z) - Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
我々は、70,346のサンプルを含む大規模なデータセットを用いて、完全な脆弱性管理プロセスを含む6つのタスクでChatGPTの機能を探求する。
注目すべき例として、ChatGPTのソフトウェアバグレポートのタイトル生成などのタスクにおける熟練度がある。
以上の結果から,ChatGPTが抱える障害が明らかとなり,将来的な方向性に光を当てた。
論文 参考訳(メタデータ) (2023-11-11T11:01:13Z) - Chatbot-supported Thesis Writing: An Autoethnographic Report [0.0]
チャットGPTは、学士論文や学生研究論文など、学習者がテキストを生成する必要のあるフォーマットに適用される。
ChatGPTは、論文を書く上で有益なツールとして評価される。
しかし、決定的な論文を書くには、学習者の意味のある関与が必要である。
論文 参考訳(メタデータ) (2023-10-14T09:09:26Z) - Can ChatGPT pass the Vietnamese National High School Graduation
Examination? [0.0]
研究データセットには、文学テストケースで30のエッセイと、他の被験者向けにデザインされた1,700の多重選択質問が含まれていた。
ChatGPTは平均スコア6-7で試験に合格し、この技術が教育現場に革命をもたらす可能性を実証した。
論文 参考訳(メタデータ) (2023-06-15T14:47:03Z) - Uncovering the Potential of ChatGPT for Discourse Analysis in Dialogue:
An Empirical Study [51.079100495163736]
本稿では、トピックセグメンテーションと談話解析という2つの談話分析タスクにおけるChatGPTの性能を体系的に検証する。
ChatGPTは、一般的なドメイン間会話においてトピック構造を特定する能力を示すが、特定のドメイン間会話ではかなり困難である。
我々のより深い調査は、ChatGPTは人間のアノテーションよりも合理的なトピック構造を提供するが、階層的なレトリック構造を線形に解析することしかできないことを示唆している。
論文 参考訳(メタデータ) (2023-05-15T07:14:41Z) - Can ChatGPT Pass An Introductory Level Functional Language Programming
Course? [2.3456295046913405]
本稿では,ChatGPTが導入レベルの関数型言語プログラミングコースでどの程度うまく機能するかを検討することを目的とする。
総合的な評価は、ChatGPTが学生とインストラクターの両方に与える影響についての貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-04-29T20:30:32Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
OpenAIが開発したChatGPTは、大量のデータを使って訓練され、人間の会話をシミュレートしている。
それは、広範囲の人間の問い合わせに効果的に答える能力のために、大きな注目を集めている。
しかし、ChatGPTの失敗の包括的分析は欠落しており、これが本研究の焦点となっている。
論文 参考訳(メタデータ) (2023-02-06T04:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。