The ART of Transfer Learning: An Adaptive and Robust Pipeline
- URL: http://arxiv.org/abs/2305.00520v1
- Date: Sun, 30 Apr 2023 16:36:57 GMT
- Title: The ART of Transfer Learning: An Adaptive and Robust Pipeline
- Authors: Boxiang Wang, Yunan Wu, and Chenglong Ye
- Abstract summary: We propose Adaptive Robust Transfer Learning (ART), a flexible pipeline of performing transfer learning with generic machine learning algorithms.
We establish the non-asymptotic learning theory of ART, providing a provable theoretical guarantee for achieving adaptive transfer while preventing negative transfer.
We demonstrate the promising performance of ART through extensive empirical studies on regression, classification, and sparse learning.
- Score: 2.294014185517203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning is an essential tool for improving the performance of
primary tasks by leveraging information from auxiliary data resources. In this
work, we propose Adaptive Robust Transfer Learning (ART), a flexible pipeline
of performing transfer learning with generic machine learning algorithms. We
establish the non-asymptotic learning theory of ART, providing a provable
theoretical guarantee for achieving adaptive transfer while preventing negative
transfer. Additionally, we introduce an ART-integrated-aggregating machine that
produces a single final model when multiple candidate algorithms are
considered. We demonstrate the promising performance of ART through extensive
empirical studies on regression, classification, and sparse learning. We
further present a real-data analysis for a mortality study.
Related papers
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - H-ensemble: An Information Theoretic Approach to Reliable Few-Shot
Multi-Source-Free Transfer [4.328706834250445]
We propose a framework named H-ensemble, which learns the optimal linear combination of source models for the target task.
Compared to previous works, H-ensemble is characterized by: 1) its adaptability to a novel MSF setting for few-shot target tasks, 2) theoretical reliability, 3) a lightweight structure easy to interpret and adapt.
We show that the H-ensemble can successfully learn the optimal task ensemble, as well as outperform prior arts.
arXiv Detail & Related papers (2023-12-19T17:39:34Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - ArCL: Enhancing Contrastive Learning with Augmentation-Robust
Representations [30.745749133759304]
We develop a theoretical framework to analyze the transferability of self-supervised contrastive learning.
We show that contrastive learning fails to learn domain-invariant features, which limits its transferability.
Based on these theoretical insights, we propose a novel method called Augmentation-robust Contrastive Learning (ArCL)
arXiv Detail & Related papers (2023-03-02T09:26:20Z) - On Hypothesis Transfer Learning of Functional Linear Models [8.557392136621894]
We study the transfer learning (TL) for the functional linear regression (FLR) under the Reproducing Kernel Space (RKHS) framework.
We measure the similarity across tasks using RKHS distance, allowing the type of information being transferred tied to the properties of the imposed RKHS.
Two algorithms are proposed: one conducts the transfer when positive sources are known, while the other leverages aggregation to achieve robust transfer without prior information about the sources.
arXiv Detail & Related papers (2022-06-09T04:50:16Z) - Multi-Augmentation for Efficient Visual Representation Learning for
Self-supervised Pre-training [1.3733988835863333]
We propose Multi-Augmentations for Self-Supervised Learning (MA-SSRL), which fully searched for various augmentation policies to build the entire pipeline.
MA-SSRL successfully learns the invariant feature representation and presents an efficient, effective, and adaptable data augmentation pipeline for self-supervised pre-training.
arXiv Detail & Related papers (2022-05-24T04:18:39Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuses old knowledge into the new model.
We show that applying WEAVER in a sequential manner results in similar word embedding distributions as doing a combined training on all data at once.
arXiv Detail & Related papers (2022-02-21T10:34:41Z) - Boosting Deep Transfer Learning for COVID-19 Classification [18.39034705389625]
COVID-19 classification using chest Computed Tomography (CT) has been found pragmatically useful.
It is still unknown if there are better strategies than vanilla transfer learning for more accurate COVID-19 classification with limited CT data.
This paper devises a novel model' augmentation technique that allows a considerable performance boost to transfer learning for the task.
arXiv Detail & Related papers (2021-02-16T11:15:23Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Uniform Priors for Data-Efficient Transfer [65.086680950871]
We show that features that are most transferable have high uniformity in the embedding space.
We evaluate the regularization on its ability to facilitate adaptation to unseen tasks and data.
arXiv Detail & Related papers (2020-06-30T04:39:36Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.