論文の概要: Discrete quadratic model QUBO solution landscapes
- arxiv url: http://arxiv.org/abs/2305.00568v2
- Date: Mon, 10 Jul 2023 22:26:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 18:29:01.301419
- Title: Discrete quadratic model QUBO solution landscapes
- Title(参考訳): 離散二次モデルQUBOソリューションランドスケープ
- Authors: Tristan Zaborniak, Ulrike Stege
- Abstract要約: 本稿では,QUBO DQMソリューションランドスケープの構造に及ぼす符号化とペナルティ強度の選択の影響について検討する。
本研究は、ワンホットおよびドメインウォールエンコーディングに特化している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many computational problems involve optimization over discrete variables with
quadratic interactions. Known as discrete quadratic models (DQMs), these
problems in general are NP-hard. Accordingly, there is increasing interest in
encoding DQMs as quadratic unconstrained binary optimization (QUBO) models to
allow their solution by quantum and quantum-inspired hardware with
architectures and solution methods designed specifically for such problem
types. However, converting DQMs to QUBO models often introduces invalid
solutions to the solution space of the QUBO models. These solutions must be
penalized by introducing appropriate constraints to the QUBO objective function
that are weighted by a tunable penalty parameter to ensure that the global
optimum is valid. However, selecting the strength of this parameter is
non-trivial, given its influence on solution landscape structure. Here, we
investigate the effects of choice of encoding and penalty strength on the
structure of QUBO DQM solution landscapes and their optimization, focusing
specifically on one-hot and domain-wall encodings.
- Abstract(参考訳): 多くの計算問題は二次相互作用を持つ離散変数の最適化を伴う。
離散二次モデル(DQMs)として知られるこれらの問題は一般にNPハードである。
したがって、dqmsを二次的非拘束型バイナリ最適化(qubo)モデルとしてエンコードすることへの関心が高まっている。
しかし、DQMをQUBOモデルに変換することは、しばしばQUBOモデルの解空間に対する無効な解をもたらす。
これらの解は、チューナブルペナルティパラメータによって重み付けされたquboの目的関数に適切な制約を導入し、大域的最適性が有効であることを保証することによってペナルティ化されなければならない。
しかし, このパラメータの強度の選択は, 溶液景観構造への影響を考えると, 簡単ではない。
本稿では,qubo dqmソリューションのランドスケープ構造に対するエンコーディングとペナルティ強度の選択の影響と,その最適化について検討する。
関連論文リスト
- Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
実世界の金融シナリオにインスパイアされたNPハード最適化問題に対して,我々の手法を適用する方法について述べる。
2つのD波量子異方体にこの問題の事例を提出し、これらのシナリオで使用される標準手法と新しい手法の性能を比較した。
論文 参考訳(メタデータ) (2024-06-11T19:59:05Z) - Deriving Compact QUBO Models via Multilevel Constraint Transformation [0.8192907805418583]
そこで本稿では,QUBOモデルに基づくMLCTS(Multilevel Constraint Transformation Scheme)を提案する。
概念実証では、後者の問題に対する2つのQUBOモデルの性能を、汎用ソフトウェアベースソルバとハードウェアベースのQUBOソルバで比較する。
MLCTS由来のモデルは、ハードウェアベースのアプローチで最大7倍のインスタンスを解くことで、両方のソルバのパフォーマンスを著しく向上させる。
論文 参考訳(メタデータ) (2024-04-04T17:34:08Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
ポートフォリオ最適化からロジスティクスに至るまで、制約付き最適化問題は業界に多い。
これらの問題の解決における主要な障害の1つは、有効な検索空間を制限する非自明なハード制約の存在である。
本研究では、Ax=bという形の任意の整数値等式制約をU(1)対称ネットワーク(TN)に直接エンコードし、それらの適用性を量子に着想を得た生成モデルとして活用する。
論文 参考訳(メタデータ) (2022-11-16T18:59:54Z) - QuAnt: Quantum Annealing with Learnt Couplings [18.40480332882025]
我々はデータからQUBOフォームを導出するのではなく、勾配のバックプロパゲーションを通して学習する。
本稿では,グラフマッチングや2次元点雲のアライメント,3次元回転推定といった多種多様な問題に対する学習QUBOの利点を示す。
論文 参考訳(メタデータ) (2022-10-13T17:59:46Z) - Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization [44.96576908957141]
本稿では,量子コンピュータ上での2次線形反復問題を解くために,フランク・ウルフアルゴリズム(Q-FW)に基づく古典量子ハイブリッドフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-23T18:00:03Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
形状対応を見つけることは、NP-hard quadratic assignment problem (QAP)として定式化できる。
本稿では,アルファ拡大アルゴリズムに触発されたQAPの反復量子法Q-Matchを提案する。
Q-Match は、実世界の問題にスケールできるような長文対応のサブセットにおいて、反復的に形状マッチング問題に適用できる。
論文 参考訳(メタデータ) (2021-05-06T17:59:38Z) - Modeling Linear Inequality Constraints in Quadratic Binary Optimization
for Variational Quantum Eigensolver [0.0]
本稿では, 変分量子固有解法における配向型変分形式の利用について紹介する。
通常、いくつかの最適化問題に現れる4つの制約がモデル化されている。
提案手法の主な利点は、変分形式のパラメータの数が一定であることである。
論文 参考訳(メタデータ) (2020-07-26T23:36:22Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。