論文の概要: Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators
- arxiv url: http://arxiv.org/abs/2305.00688v1
- Date: Mon, 1 May 2023 07:01:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 13:53:03.615866
- Title: Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators
- Title(参考訳): Kerr-nonlinearパラメトリックオシレータを用いた表現型量子監視機械学習
- Authors: Yuichiro Mori, Kouhei Nakaji, Yuichiro Matsuzaki, Shiro Kawabata
- Abstract要約: 変分量子アルゴリズム(VQA)を用いた量子機械学習は、ノイズのある中間スケール量子(NISQ)時代の実用的なアルゴリズムとして積極的に研究されている。
近年の研究では、古典的なデータを量子回路に繰り返しエンコードするデータ再アップロードが、表現力のある量子機械学習モデルを得るために必要であることが示されている。
我々は、Kerrnon Parametric Hilberts (KPO) を別の有望な量子コンピューティングデバイスとして用いて量子機械学習を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning with variational quantum algorithms (VQA) has been
actively investigated as a practical algorithm in the noisy intermediate-scale
quantum (NISQ) era. Recent researches reveal that the data reuploading, which
repeatedly encode classical data into quantum circuit, is necessary for
obtaining the expressive quantum machine learning model in the conventional
quantum computing architecture. However, the data reuploding tends to require
large amount of quantum resources, which motivates us to find an alternative
strategy for realizing the expressive quantum machine learning efficiently. In
this paper, we propose quantum machine learning with Kerr-nonlinear Parametric
Oscillators (KPOs), as another promising quantum computing device. The key idea
is that we use not only the ground state and first excited state but also use
higher excited states, which allows us to use a large Hilbert space even if we
have a single KPO. Our numerical simulations show that the expressibility of
our method with only one mode of the KPO is much higher than that of the
conventional method with six qubits. Our results pave the way towards resource
efficient quantum machine learning, which is essential for the practical
applications in the NISQ era.
- Abstract(参考訳): 変分量子アルゴリズム(VQA)を用いた量子機械学習は、ノイズのある中間スケール量子(NISQ)時代の実用的なアルゴリズムとして積極的に研究されている。
近年の研究では、古典的データを量子回路に繰り返しエンコードするデータ再アップロードが、従来の量子コンピューティングアーキテクチャで表現力のある量子機械学習モデルを得るために必要であることが示されている。
しかし、データ再複製は大量の量子リソースを必要とする傾向があるため、表現力のある量子機械学習を効率的に実現するための代替戦略を見つける動機となる。
本稿では、kpos(kerr-nonlinear parametric oscillators)を用いた量子機械学習を、有望な量子計算デバイスとして提案する。
鍵となる考え方は、基底状態と第一励起状態だけでなく、より高い励起状態も使い、単一のKPOを持つ場合でも大きなヒルベルト空間を使うことができるということである。
数値シミュレーションにより,kpoの1つのモードのみを用いた方法の表現性は,従来の6量子ビット法よりもはるかに高いことがわかった。
この結果は,nisq時代の実用的応用に不可欠な,資源効率のよい量子機械学習への道を開くものである。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
時間進化作用素は、量子コンピュータにおける化学実験の正確な計算において重要な役割を果たす。
我々は、運動エネルギー演算子の量子化のための新しい符号化法、すなわち量子近似時間発展法(QATE)を提案している。
論文 参考訳(メタデータ) (2023-10-05T05:25:38Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
量子コンピュータ上での単位ステップ関数の形で非線形性を近似するための振幅に基づく実装を提案する。
より先進的な量子アルゴリズムに埋め込まれた場合、古典的コンピュータから直接入力を受ける2つの異なる回路タイプを量子状態として記述する。
論文 参考訳(メタデータ) (2022-06-07T07:14:12Z) - Machine learning applications for noisy intermediate-scale quantum
computers [0.0]
NISQコンピュータに適した3つの量子機械学習アプリケーションを開発し研究する。
これらのアルゴリズムは本質的に変動し、基礎となる量子機械学習モデルとしてパラメータ化量子回路(PQC)を使用する。
近似量子クローニングの領域において,データを自然界において量子化する変分アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-19T09:26:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
想像時間における進化は、量子多体系の基底状態を見つけるための顕著な技術である。
本稿では,量子コンピュータ上での仮想時間伝搬を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T12:48:00Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
計算量子化学の近似をゲートベースの量子コンピュータ上で分子化学をシミュレートする手法と組み合わせる。
基本集合を増大させるために解放された量子資源を用いることで、より正確な結果が得られ、必要な数の量子コンピューティングの実行が削減されることが示される。
論文 参考訳(メタデータ) (2020-01-31T19:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。