IoTFlowGenerator: Crafting Synthetic IoT Device Traffic Flows for Cyber
Deception
- URL: http://arxiv.org/abs/2305.00925v1
- Date: Mon, 1 May 2023 16:24:07 GMT
- Title: IoTFlowGenerator: Crafting Synthetic IoT Device Traffic Flows for Cyber
Deception
- Authors: Joseph Bao, Murat Kantarcioglu, Yevgeniy Vorobeychik, Charles Kamhoua
- Abstract summary: Honeypots are an important security tool to understand attacker intent and deceive attackers to spend time and resources.
To build better honeypots and enhance cyber deception capabilities, IoT honeypots need to generate realistic network traffic flows.
We propose a novel deep learning based approach for generating traffic flows that mimic real network traffic due to user and IoT device interactions.
- Score: 31.822346303953164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the years, honeypots emerged as an important security tool to understand
attacker intent and deceive attackers to spend time and resources. Recently,
honeypots are being deployed for Internet of things (IoT) devices to lure
attackers, and learn their behavior. However, most of the existing IoT
honeypots, even the high interaction ones, are easily detected by an attacker
who can observe honeypot traffic due to lack of real network traffic
originating from the honeypot. This implies that, to build better honeypots and
enhance cyber deception capabilities, IoT honeypots need to generate realistic
network traffic flows. To achieve this goal, we propose a novel deep learning
based approach for generating traffic flows that mimic real network traffic due
to user and IoT device interactions. A key technical challenge that our
approach overcomes is scarcity of device-specific IoT traffic data to
effectively train a generator. We address this challenge by leveraging a core
generative adversarial learning algorithm for sequences along with domain
specific knowledge common to IoT devices. Through an extensive experimental
evaluation with 18 IoT devices, we demonstrate that the proposed synthetic IoT
traffic generation tool significantly outperforms state of the art sequence and
packet generators in remaining indistinguishable from real traffic even to an
adaptive attacker.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - HoneyIoT: Adaptive High-Interaction Honeypot for IoT Devices Through
Reinforcement Learning [10.186372780116631]
We develop an adaptive high-interaction honeypot for IoT devices, called HoneyIoT.
We first build a real device based attack trace collection system to learn how attackers interact with IoT devices.
We then model the attack behavior through markov decision process and leverage reinforcement learning techniques to learn the best responses to engage attackers.
arXiv Detail & Related papers (2023-05-10T19:43:20Z) - AIIPot: Adaptive Intelligent-Interaction Honeypot for IoT Devices [3.571367745766466]
Honeypot is a popular deception technique that mimics interaction in real fashion.
We propose a honeypot for IoT devices that uses machine learning techniques to learn and interact with attackers automatically.
arXiv Detail & Related papers (2023-03-22T08:06:41Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - What are Attackers after on IoT Devices? An approach based on a
multi-phased multi-faceted IoT honeypot ecosystem and data clustering [11.672070081489565]
Honeypots have been historically used as decoy devices to help researchers gain a better understanding of the dynamic of threats on a network.
In this work, we presented a new approach to creating a multi-phased, multi-faceted honeypot ecosystem.
We were able to collect increasingly sophisticated attack data in each phase.
arXiv Detail & Related papers (2021-12-21T04:11:45Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
We propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from unmanned aerial vehicle (UAV) communications.
In a first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in a second phase, the UAV collects data from the IoT devices through information transmission.
We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimization problem of maximizing the total network sum-rate.
arXiv Detail & Related papers (2021-08-05T23:55:44Z) - Lightweight IoT Malware Detection Solution Using CNN Classification [2.288885651912488]
The security aspect of IoT devices is an infant field, which is why it is our focus in this paper.
We developed a system that can recognize malicious behavior of a specific IoT node on the network.
Through convolutional neural network and monitoring, we were able to provide malware detection for IoT using a central node that can be installed within the network.
arXiv Detail & Related papers (2020-10-13T10:56:33Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
This thesis is the culmination of our efforts to develop techniques to profile the network behavioral pattern of IoTs.
We develop a robust machine learning-based inference engine trained with attributes from traffic patterns.
We demonstrate real-time classification of 28 IoT devices with over 99% accuracy.
arXiv Detail & Related papers (2020-01-28T23:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.