Exploring the synergistic potential of quantum annealing and gate model
computing for portfolio optimization
- URL: http://arxiv.org/abs/2305.01480v1
- Date: Tue, 2 May 2023 15:02:13 GMT
- Title: Exploring the synergistic potential of quantum annealing and gate model
computing for portfolio optimization
- Authors: Naman Jain and M Girish Chandra
- Abstract summary: We extend upon a study to use the best of both quantum annealing and gate-based quantum computing systems.
We conduct tests on real-world stock data from the Indian stock market on up to 64 assets.
Our findings suggest that hybrid annealer-gate quantum computing can be a valuable tool for portfolio managers seeking to optimize their investment portfolios.
- Score: 2.432141667343098
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Portfolio optimization is one of the most studied problems for demonstrating
the near-term applications of quantum computing. However, large-scale problems
cannot be solved on today's quantum hardware. In this work, we extend upon a
study to use the best of both quantum annealing and gate-based quantum
computing systems to enable solving large-scale optimization problems
efficiently on the available hardware. The existing work uses a method called
Large System Sampling Approximation (LSSA) that involves dividing the large
problem into several smaller problems and then combining the multiple solutions
to approximate the solution to the original problem. This paper introduces a
novel technique to modify the sampling step of LSSA. We divide the portfolio
optimization problem into sub-systems of smaller sizes by selecting a diverse
set of assets that act as representatives of the entire market and capture the
highest correlations among assets. We conduct tests on real-world stock data
from the Indian stock market on up to 64 assets. Our experimentation shows that
the hybrid approach performs at par with the traditional classical optimization
methods with a good approximation ratio. We also demonstrate the effectiveness
of our approach on a range of portfolio optimization problems of different
sizes. We present the effects of different parameters on the proposed method
and compare its performance with the earlier work. Our findings suggest that
hybrid annealer-gate quantum computing can be a valuable tool for portfolio
managers seeking to optimize their investment portfolios in the near future.
Related papers
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms [4.2435928520499635]
Portfolio Optimization (PO) is a financial problem aiming to maximize the net gains while minimizing the risks in a given investment portfolio.
We propose a novel scalable framework, denoted PO-QA, to investigate the variation of quantum parameters.
Our results provide effective insights into comprehending PO from the lens of Quantum Machine Learning.
arXiv Detail & Related papers (2024-07-29T10:26:28Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - A Novel Knapsack-based Financial Portfolio Optimization using Quantum Approximate Optimization Algorithm [2.6603181502541986]
We propose a method that uses the quantum computing capabilities of the quantum walk mixer with the quantum approximate optimization algorithm (QAOA) to address the challenges presented by the NP-hard problem.
Our study successfully achieves the approximate ratio of the portfolio optimization technique using a circuit layer of p >= 3, compared to the classical best-known solution of the knapsack problem.
arXiv Detail & Related papers (2024-02-11T08:20:26Z) - Variational Quantum Multi-Objective Optimization [5.381539115778766]
We present a variational quantum optimization algorithm to solve discrete multi-objective optimization problems on quantum computers.
We show the effectiveness of the proposed algorithm on several benchmark problems with up to five objectives.
arXiv Detail & Related papers (2023-12-21T18:59:21Z) - Multi-Objective Optimization and Network Routing with Near-Term Quantum
Computers [0.2150989251218736]
We develop a scheme with which near-term quantum computers can be applied to solve multi-objective optimization problems.
We focus on an implementation based on the quantum approximate optimization algorithm (QAOA)
arXiv Detail & Related papers (2023-08-16T09:22:01Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.