Curriculum Modeling the Dependence among Targets with Multi-task
Learning for Financial Marketing
- URL: http://arxiv.org/abs/2305.01514v1
- Date: Tue, 25 Apr 2023 07:55:16 GMT
- Title: Curriculum Modeling the Dependence among Targets with Multi-task
Learning for Financial Marketing
- Authors: Yunpeng Weng, Xing Tang, Liang Chen, Xiuqiang He
- Abstract summary: We propose a prior information merged model (textbfPIMM) for multiple sequential dependence task learning.
The PIM randomly selects the true label information or the prior task prediction with a soft sampling strategy to transfer to the downstream task during the training.
The offline experimental results on both public and product datasets verify that PIMM outperforms state-of-the-art baselines.
- Score: 26.80709680959278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning for various real-world applications usually involves
tasks with logical sequential dependence. For example, in online marketing, the
cascade behavior pattern of $impression \rightarrow click \rightarrow
conversion$ is usually modeled as multiple tasks in a multi-task manner, where
the sequential dependence between tasks is simply connected with an explicitly
defined function or implicitly transferred information in current works. These
methods alleviate the data sparsity problem for long-path sequential tasks as
the positive feedback becomes sparser along with the task sequence. However,
the error accumulation and negative transfer will be a severe problem for
downstream tasks. Especially, at the beginning stage of training, the
optimization for parameters of former tasks is not converged yet, and thus the
information transferred to downstream tasks is negative. In this paper, we
propose a prior information merged model (\textbf{PIMM}), which explicitly
models the logical dependence among tasks with a novel prior information merged
(\textbf{PIM}) module for multiple sequential dependence task learning in a
curriculum manner. Specifically, the PIM randomly selects the true label
information or the prior task prediction with a soft sampling strategy to
transfer to the downstream task during the training. Following an
easy-to-difficult curriculum paradigm, we dynamically adjust the sampling
probability to ensure that the downstream task will get the effective
information along with the training. The offline experimental results on both
public and product datasets verify that PIMM outperforms state-of-the-art
baselines. Moreover, we deploy the PIMM in a large-scale FinTech platform, and
the online experiments also demonstrate the effectiveness of PIMM.
Related papers
- Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning [1.0765359420035392]
We analyze sequential dependence MTL from rigorous mathematical perspective.
We propose a Task Aware Feature Extraction (TAFE) framework for sequential dependence MTL.
arXiv Detail & Related papers (2023-01-06T13:12:59Z) - TaskMix: Data Augmentation for Meta-Learning of Spoken Intent
Understanding [0.0]
We show that a state-of-the-art data augmentation method worsens this problem of overfitting when the task diversity is low.
We propose a simple method, TaskMix, which synthesizes new tasks by linearly interpolating existing tasks.
We show that TaskMix outperforms baselines, alleviates overfitting when task diversity is low, and does not degrade performance even when it is high.
arXiv Detail & Related papers (2022-09-26T00:37:40Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - A Markov Decision Process Approach to Active Meta Learning [24.50189361694407]
In supervised learning, we fit a single statistical model to a given data set, assuming that the data is associated with a singular task.
In meta-learning, the data is associated with numerous tasks, and we seek a model that may perform well on all tasks simultaneously.
arXiv Detail & Related papers (2020-09-10T15:45:34Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.