論文の概要: Multi-Head Graph Convolutional Network for Structural Connectome
Classification
- arxiv url: http://arxiv.org/abs/2305.02199v2
- Date: Wed, 20 Sep 2023 15:03:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 22:32:37.222043
- Title: Multi-Head Graph Convolutional Network for Structural Connectome
Classification
- Title(参考訳): 構造コネクトーム分類のためのマルチヘッドグラフ畳み込みネットワーク
- Authors: Anees Kazi, Jocelyn Mora, Bruce Fischl, Adrian V. Dalca, and Iman
Aganj
- Abstract要約: グラフ畳み込みネットワーク(GCN)にインスパイアされた機械学習モデルを提案する。
提案するネットワークは,エッジとノードに着目したグラフ畳み込みを含む,異なるヘッドを用いたシンプルな設計である。
脳接続データから補完的特徴と代表的特徴を抽出する能力をテストするため,私たちは性分類の課題を選択した。
- 参考スコア(独自算出の注目度): 8.658134276685404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle classification based on brain connectivity derived from diffusion
magnetic resonance images. We propose a machine-learning model inspired by
graph convolutional networks (GCNs), which takes a brain connectivity input
graph and processes the data separately through a parallel GCN mechanism with
multiple heads. The proposed network is a simple design that employs different
heads involving graph convolutions focused on edges and nodes, capturing
representations from the input data thoroughly. To test the ability of our
model to extract complementary and representative features from brain
connectivity data, we chose the task of sex classification. This quantifies the
degree to which the connectome varies depending on the sex, which is important
for improving our understanding of health and disease in both sexes. We show
experiments on two publicly available datasets: PREVENT-AD (347 subjects) and
OASIS3 (771 subjects). The proposed model demonstrates the highest performance
compared to the existing machine-learning algorithms we tested, including
classical methods and (graph and non-graph) deep learning. We provide a
detailed analysis of each component of our model.
- Abstract(参考訳): 拡散磁気共鳴画像から得られる脳の接続性に基づく分類に取り組む。
本稿では,複数の頭部を持つ並列gcn機構を用いて,脳接続入力グラフを別々に処理するグラフ畳み込みネットワーク(gcns)に触発された機械学習モデルを提案する。
提案するネットワークは,エッジとノードに着目したグラフ畳み込みを含む異なるヘッドを用いたシンプルな設計であり,入力データからの表現を徹底的にキャプチャする。
脳接続データから補完的特徴と代表的特徴を抽出する能力をテストするため,私たちは性分類の課題を選択した。
これは、コネクトームが性によって変化する程度を定量化し、両方の性における健康と病気の理解を改善するのに重要である。
公開データセットであるPreVENT-AD(347名)とOASIS3(771名)について実験を行った。
提案モデルでは,古典的手法や(グラフおよび非グラフ)深層学習を含む既存の機械学習アルゴリズムと比較して高い性能を示す。
モデルの各コンポーネントについて詳細な分析を行う。
関連論文リスト
- Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
本稿では,グラフサンプリングにおける集約を利用したアグリゲータ正規化グラフ畳み込みネットワークを提案する。
提案モデルは,画像特徴と非画像特徴の両方をグラフノードとエッジに組み込むことで,識別グラフノード表現を学習する。
我々は、自閉症脳画像データ交換(ABIDE)とアルツハイマー病神経イメージングイニシアチブ(ADNI)という2つの大きなデータセット上の最近のベースライン手法と比較して、我々のモデルをベンチマークした。
論文 参考訳(メタデータ) (2023-11-13T14:36:29Z) - Visual Commonsense based Heterogeneous Graph Contrastive Learning [79.22206720896664]
視覚的推論タスクをより良く仕上げるための異種グラフコントラスト学習法を提案する。
本手法はプラグイン・アンド・プレイ方式として設計されており,多種多様な代表手法と迅速かつ容易に組み合わせることができる。
論文 参考訳(メタデータ) (2023-11-11T12:01:18Z) - HDGL: A hierarchical dynamic graph representation learning model for
brain disorder classification [1.7495515703051119]
上記の課題に対処するために設計された最初のモデルである階層型動的グラフ表現学習(HDGL)モデルを提案する。
ABIDEおよびADHD-200データセットを用いて提案モデルの性能を評価する。
論文 参考訳(メタデータ) (2023-11-06T06:29:23Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
我々は脳を機能的ネットワークとしてモデル化できることを示し,ADHD被験者と制御対象とではネットワークの特定の特性が異なることを示した。
776名の被験者で分類器を訓練し,ADHD-200チャレンジのために神経局が提供する171名の被験者を対象に試験を行った。
論文 参考訳(メタデータ) (2023-06-15T16:22:57Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Multi network InfoMax: A pre-training method involving graph
convolutional networks [0.0]
本稿では,グラフ畳み込み/ニューラルネットワーク(GCN/GNN)を含む事前学習手法を提案する。
学習された高レベルグラフ潜在表現は、下流グラフ分類タスクのパフォーマンス向上に役立つ。
我々は、被験者を健康管理群(HC)と統合失調症群(SZ)に分類するための神経画像データセットに適用した。
論文 参考訳(メタデータ) (2021-11-01T21:53:20Z) - Brain dynamics via Cumulative Auto-Regressive Self-Attention [0.0]
深部グラフニューラルネットワーク(GNN)よりもかなり浅いモデルを提案する。
本モデルは,各時系列の自己回帰構造を学習し,有向接続グラフを推定する。
統合失調症患者とコントロールを分類した機能的ニューロイメージングデータセットについて報告する。
論文 参考訳(メタデータ) (2021-11-01T21:50:35Z) - A Few-shot Learning Graph Multi-Trajectory Evolution Network for
Forecasting Multimodal Baby Connectivity Development from a Baseline
Timepoint [53.73316520733503]
本稿では,教師-学生パラダイムを取り入れたグラフ多目的進化ネットワーク(GmTE-Net)を提案する。
これは、脳グラフ多軌道成長予測に適した最初の教師学生アーキテクチャである。
論文 参考訳(メタデータ) (2021-10-06T08:26:57Z) - Deep Hypergraph U-Net for Brain Graph Embedding and Classification [0.0]
ネットワーク神経科学は、ネットワーク(またはコネクトーム)で表されるシステムとして脳を調べる
データサンプルの低次元埋め込みを学習するためにハイパーグラフ構造を利用した新しいデータ埋め込みフレームワークHypergraph U-Netを提案する。
自閉症および認知症患者の形態的・機能的脳ネットワークを含む,小規模・大規模異種脳コネクトームデータセットについて検討した。
論文 参考訳(メタデータ) (2020-08-30T08:15:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。