論文の概要: Discovering Communication Pattern Shifts in Large-Scale Networks using
Encoder Embedding and Vertex Dynamics
- arxiv url: http://arxiv.org/abs/2305.02381v1
- Date: Wed, 3 May 2023 18:38:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-05 18:04:47.561405
- Title: Discovering Communication Pattern Shifts in Large-Scale Networks using
Encoder Embedding and Vertex Dynamics
- Title(参考訳): エンコーダ埋め込みと頂点ダイナミクスを用いた大規模ネットワークにおける通信パターンシフトの発見
- Authors: Cencheng Shen, Jonathan Larson, Ha Trinh, Xihan Qin, Youngser Park,
Carey E. Priebe
- Abstract要約: 線形複雑度で大量のグラフデータを効率的に埋め込む「テンポラリエンコーダ埋め込み」という新しい手法を導入する。
本手法は,標準コンピュータに10秒以内にデータを埋め込み,通信パターンのシフトを検出する。
- 参考スコア(独自算出の注目度): 11.298967062283898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The analysis of large-scale time-series network data, such as social media
and email communications, remains a significant challenge for graph analysis
methodology. In particular, the scalability of graph analysis is a critical
issue hindering further progress in large-scale downstream inference. In this
paper, we introduce a novel approach called "temporal encoder embedding" that
can efficiently embed large amounts of graph data with linear complexity. We
apply this method to an anonymized time-series communication network from a
large organization spanning 2019-2020, consisting of over 100 thousand vertices
and 80 million edges. Our method embeds the data within 10 seconds on a
standard computer and enables the detection of communication pattern shifts for
individual vertices, vertex communities, and the overall graph structure.
Through supporting theory and synthesis studies, we demonstrate the theoretical
soundness of our approach under random graph models and its numerical
effectiveness through simulation studies.
- Abstract(参考訳): ソーシャルメディアや電子メール通信などの大規模時系列ネットワークデータの解析は,グラフ解析手法において重要な課題である。
特に、グラフ解析のスケーラビリティは、大規模な下流推論のさらなる進歩を妨げる重要な問題である。
本稿では,多量のグラフデータを線形複雑に効率的に埋め込むことのできる「時間エンコーダ埋め込み」と呼ばれる新しい手法を提案する。
この手法を2019年から2020年までの大企業の匿名化時系列通信ネットワークに適用し、1万の頂点と8000万のエッジからなる。
本手法は,標準計算機に10秒以内にデータを埋め込み,個々の頂点,頂点コミュニティ,および全体グラフ構造に対する通信パターンシフトの検出を可能にする。
理論および合成研究の支援を通じて、ランダムグラフモデルに基づくアプローチの理論的健全性とそのシミュレーション研究による数値的効果を示す。
関連論文リスト
- TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
本稿では,Top-mアテンション機構アグリゲーションコンポーネントと近傍アグリゲーションコンポーネントを統合した,革新的なグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
提案手法の有効性を評価するため,提案手法をGNN分野において未探索の新たな課題である引用感情予測に適用した。
論文 参考訳(メタデータ) (2024-11-23T05:31:25Z) - Online Learning Of Expanding Graphs [14.952056744888916]
本稿では,信号ストリームからグラフを拡張するためのオンラインネットワーク推論の問題に対処する。
ネットワークに加入したばかりのノードや,それまでのノードに対して,さまざまなタイプの更新を可能にする戦略を導入する。
論文 参考訳(メタデータ) (2024-09-13T09:20:42Z) - Task-Oriented Communication for Graph Data: A Graph Information Bottleneck Approach [12.451324619122405]
本稿では,コミュニケーションのオーバーヘッドを低減しつつ,鍵情報を保持するタスク中心のより小さなサブグラフを抽出する手法を提案する。
提案手法では,グラフニューラルネットワーク(GNN)とグラフ情報ボトルネック(GIB)の原理を用いて,伝達に適したコンパクトで情報的,堅牢なグラフ表現を生成する。
論文 参考訳(メタデータ) (2024-09-04T14:01:56Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
信頼性オーグメンテーション(CONVERT)を用いたContrastiVe Graph ClustEringネットワークを提案する。
本手法では,データ拡張を可逆的パーターブ・リカバリネットワークにより処理する。
セマンティクスの信頼性をさらに保証するために、ネットワークを制約する新たなセマンティクス損失が提示される。
論文 参考訳(メタデータ) (2023-08-17T13:07:09Z) - Graph Neural Networks for Multi-Robot Active Information Acquisition [15.900385823366117]
基礎となるグラフを通して通信する移動ロボットのチームは、興味のある現象を表す隠れた状態を推定する。
既存のアプローチはスケーラブルではないか、動的現象に対処できないか、あるいは通信グラフの変化に対して堅牢でないかのどちらかです。
本稿では,グラフ表現上に情報を集約し,逐次決定を分散的に行う情報対応グラフブロックネットワーク(I-GBNet)を提案する。
論文 参考訳(メタデータ) (2022-09-24T21:45:06Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Evidential Temporal-aware Graph-based Social Event Detection via
Dempster-Shafer Theory [76.4580340399321]
ETGNN(Evidential Temporal-aware Graph Neural Network)を提案する。
ノードがテキストであり、エッジがそれぞれ複数の共有要素によって決定されるビュー固有グラフを構築する。
ビュー固有の不確実性を考慮すると、すべてのビューの表現は、明らかなディープラーニング(EDL)ニューラルネットワークを介してマス関数に変換される。
論文 参考訳(メタデータ) (2022-05-24T16:22:40Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z) - Understanding Crowd Behaviors in a Social Event by Passive WiFi Sensing
and Data Mining [21.343209622186606]
本研究では,大規模社会イベントにおける群集行動に関連する3種類のパターンを抽出する包括的データ分析フレームワークを提案する。
まず,移動体の軌跡を探索要求から抽出し,群衆の動きの空間的パターンを明らかにする。
次に、k-meansとk-shapeクラスタリングアルゴリズムを適用し、群衆を訪れる時間パターンを日と場所によって抽出する。
論文 参考訳(メタデータ) (2020-02-05T03:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。