論文の概要: Can Feature Engineering Help Quantum Machine Learning for Malware
Detection?
- arxiv url: http://arxiv.org/abs/2305.02396v1
- Date: Wed, 3 May 2023 19:33:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-05 17:53:13.864440
- Title: Can Feature Engineering Help Quantum Machine Learning for Malware
Detection?
- Title(参考訳): 機能エンジニアリングはマルウェア検出の量子機械学習に役立つか?
- Authors: Ran Liu, Maksim Eren, Charles Nicholas
- Abstract要約: 本稿では,この問題に対処するための理論量子MLのハイブリッドフレームワークを提案する。
XGBoostが選択したVQCは、シミュレータで78.91%の精度でテストできる。
XGBoostで選択した特徴を用いてトレーニングしたモデルの平均精度は74%であった。
- 参考スコア(独自算出の注目度): 7.010669841466896
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the increasing number and sophistication of malware attacks, malware
detection systems based on machine learning (ML) grow in importance. At the
same time, many popular ML models used in malware classification are supervised
solutions. These supervised classifiers often do not generalize well to novel
malware. Therefore, they need to be re-trained frequently to detect new malware
specimens, which can be time-consuming. Our work addresses this problem in a
hybrid framework of theoretical Quantum ML, combined with feature selection
strategies to reduce the data size and malware classifier training time. The
preliminary results show that VQC with XGBoost selected features can get a
78.91% test accuracy on the simulator. The average accuracy for the model
trained using the features selected with XGBoost was 74% (+- 11.35%) on the IBM
5 qubits machines.
- Abstract(参考訳): マルウェア攻撃の増加と高度化に伴い、機械学習(ML)に基づくマルウェア検出システムの重要性が高まっている。
同時に、マルウェア分類で使用される多くの一般的なMLモデルが教師付きソリューションである。
これらの教師付き分類器は、しばしば新しいマルウェアによく一般化しない。
そのため、新しいマルウェアの標本を検出するために、頻繁に再訓練する必要がある。
本研究は,データサイズとマルウェア分類器の訓練時間を削減するための特徴選択戦略と組み合わせた,理論量子mlのハイブリッドフレームワークでこの問題に対処した。
予備的な結果は、XGBoostが選択したVQCがシミュレータで78.91%の精度でテストできることを示している。
XGBoostで選択された機能を使用してトレーニングされたモデルの平均精度は、IBM 5量子ビットマシンで74%(+-11.35%)であった。
関連論文リスト
- Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach [0.0]
本稿では,高度に正確で軽量で解釈可能な,難読化マルウェアを検出する機械学習システムを提案する。
本システムでは,1つのマルウェアサブタイプ,すなわちSpywareファミリーのTransponderでのみ訓練されているにもかかわらず,15種類のマルウェアサブタイプを検出することができる。
トランスポンダー中心のモデルは99.8%を超え、平均処理速度はファイルあたり5.7マイクロ秒であった。
論文 参考訳(メタデータ) (2024-07-07T12:41:40Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
業界関係者は、モデルが数億台のマシンにデプロイされているため、マルウェア検出精度の小さな改善に気を配っている。
学術研究はしばしば1万のサンプルの順序で公開データセットに制限される。
利用可能なサンプルのプールから難易度ベンチマークを生成するためのアプローチを考案する。
論文 参考訳(メタデータ) (2023-12-25T21:25:55Z) - Creating Valid Adversarial Examples of Malware [4.817429789586127]
本稿では、強化学習アルゴリズムを用いて、敵のマルウェアの例を生成する。
PPOアルゴリズムを用いて,勾配型決定木(GBDT)モデルに対して53.84%の回避率を達成した。
機能保存型可搬性改造のランダムな適用は、主要なアンチウイルスエンジンを回避できる。
論文 参考訳(メタデータ) (2023-06-23T16:17:45Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - A Survey of Machine Unlearning [56.017968863854186]
最近の規制では、要求に応じて、ユーザに関する個人情報をコンピュータシステムから削除する必要がある。
MLモデルは古いデータをよく記憶します。
機械学習に関する最近の研究は、この問題を完全に解決することはできなかった。
論文 参考訳(メタデータ) (2022-09-06T08:51:53Z) - Comprehensive Efficiency Analysis of Machine Learning Algorithms for
Developing Hardware-Based Cybersecurity Countermeasures [0.0]
現代のコンピュータシステムによって、サイバー敵は以前よりも高度なマルウェアを作れるようになった。
現代の検出技術は、悪意のあるソフトウェアの検出率を高めるために、機械学習フィールドとハードウェアを使用する。
HPC値に匹敵しないマルウェアがこれらの新しい手法に接触すると、問題が発生する。
論文 参考訳(メタデータ) (2022-01-05T22:08:57Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
悪意のあるアクターが代理モデルを訓練して、インスタンスが誤分類される原因となるバイナリ変異を発見する方法を示す。
そして、変異したマルウェアが、抗ウイルスAPIの代わりとなる被害者モデルに送られ、検出を回避できるかどうかをテストする。
論文 参考訳(メタデータ) (2021-06-15T03:31:02Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Classifying Malware Images with Convolutional Neural Network Models [2.363388546004777]
本稿では,静的マルウェア分類にいくつかの畳み込みニューラルネットワーク(CNN)モデルを用いる。
インセプションV3モデルは99.24%の精度を達成しており、現在の最先端システムによって達成される98.52%の精度よりも優れている。
論文 参考訳(メタデータ) (2020-10-30T07:39:30Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。