Secure and Efficient Entanglement Distribution Protocol for Near-Term
Quantum Internet
- URL: http://arxiv.org/abs/2312.05775v1
- Date: Sun, 10 Dec 2023 05:38:40 GMT
- Title: Secure and Efficient Entanglement Distribution Protocol for Near-Term
Quantum Internet
- Authors: Nicholas Skjellum, Mohamed Shaban, and Muhammad Ismail
- Abstract summary: This paper introduces a protocol to distribute entanglements among quantum devices within classical-quantum networks with limited quantum links.
The proposed protocol uses entanglement swapping to distribute entanglements efficiently in a butterfly network.
We also propose a protocol for securing entanglement distribution against malicious entanglements using quantum state encoding through rotation.
- Score: 1.7562083088615124
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum information technology has the potential to revolutionize computing,
communications, and security. To fully realize its potential, quantum
processors with millions of qubits are needed, which is still far from being
accomplished. Thus, it is important to establish quantum networks to enable
distributed quantum computing to leverage existing and near-term quantum
processors into more powerful resources. This paper introduces a protocol to
distribute entanglements among quantum devices within classical-quantum
networks with limited quantum links, enabling more efficient quantum
teleportation in near-term hybrid networks. The proposed protocol uses
entanglement swapping to distribute entanglements efficiently in a butterfly
network, then classical network coding is applied to enable quantum
teleportation while overcoming network bottlenecks and minimizing qubit
requirements for individual nodes. Experimental results show that the proposed
protocol requires quantum resources that scale linearly with network size, with
individual nodes only requiring a fixed number of qubits. For small network
sizes of up to three transceiver pairs, the proposed protocol outperforms the
benchmark by using 17% fewer qubit resources, achieving 8.8% higher accuracy,
and with a 35% faster simulation time. The percentage improvement increases
significantly for large network sizes. We also propose a protocol for securing
entanglement distribution against malicious entanglements using quantum state
encoding through rotation. Our analysis shows that this method requires no
communication overhead and reduces the chance of a malicious node retrieving a
quantum state to 7.2%. The achieved results point toward a protocol that
enables a highly scalable, efficient, and secure near-term quantum Internet.
Related papers
- Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Secured Quantum Identity Authentication Protocol for Quantum Networks [2.3317857568404032]
This paper proposes a quantum identity authentication protocol that protects quantum networks from malicious entanglements.
Unlike the existing protocols, the proposed quantum authentication protocol does not require periodic refreshments of the shared secret keys.
arXiv Detail & Related papers (2023-12-10T05:36:49Z) - Quantum information spreading and scrambling in a distributed quantum
network: A Hasse/Lamport diagrammatic approach [14.308249733521182]
Large-scale quantum networks, known as quantum internet, hold great promises for advanced distributed quantum computing and long-distance quantum communication.
We propose a novel diagrammatic way of visualizing information flow dynamics within the quantum network.
We also propose a quantum information scrambling protocol, where a specific node scrambles secret quantum information across the entire network.
arXiv Detail & Related papers (2023-09-19T06:48:42Z) - The Quantum Internet: an Efficient Stabilizer states Distribution Scheme [0.0]
Quantum networks constitute a major part of quantum technologies.
They will boost quantum computing drastically by providing a scalable modular architecture of quantum chips.
They will provide the backbone of the future quantum internet, allowing for high margins of security.
arXiv Detail & Related papers (2023-05-04T08:53:38Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Benchmarking of Quantum Protocols [0.9176056742068812]
We consider several quantum protocols that enable promising functionalities and services in near-future quantum networks.
We use NetSquid simulation platform to evaluate the effect of various sources of noise on the performance of these protocols.
arXiv Detail & Related papers (2021-11-03T21:17:04Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.