論文の概要: Using interpretable boosting algorithms for modeling environmental and
agricultural data
- arxiv url: http://arxiv.org/abs/2305.02699v1
- Date: Thu, 4 May 2023 10:16:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-05 16:12:20.369839
- Title: Using interpretable boosting algorithms for modeling environmental and
agricultural data
- Title(参考訳): 環境・農業データモデリングのための解釈可能なブースティングアルゴリズム
- Authors: Fabian Obster, Christian Heumann, Heidi Bohle, Paul Pechan
- Abstract要約: 本稿では,高次元環境データの解析に解釈可能なブースティングアルゴリズムを用いる方法について述べる。
提案手法は, 群構造をどう考えるか, 相互作用が高次元データセットでどのように見られるのかを, 新たな2段階ブースティング手法を用いて示すものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe how interpretable boosting algorithms based on ridge-regularized
generalized linear models can be used to analyze high-dimensional environmental
data. We illustrate this by using environmental, social, human and biophysical
data to predict the financial vulnerability of farmers in Chile and Tunisia
against climate hazards. We show how group structures can be considered and how
interactions can be found in high-dimensional datasets using a novel 2-step
boosting approach. The advantages and efficacy of the proposed method are shown
and discussed. Results indicate that the presence of interaction effects only
improves predictive power when included in two-step boosting. The most
important variable in predicting all types of vulnerabilities are natural
assets. Other important variables are the type of irrigation, economic assets
and the presence of crop damage of near farms.
- Abstract(参考訳): 本稿では,リッジ正規化一般化線形モデルに基づく解釈可能なブースティングアルゴリズムを用いた高次元環境データの解析について述べる。
環境・社会的・人的・生物物理学的データを用いて、チリやチュニジアの農家の気候災害に対する経済的脆弱性を予測する。
提案手法は, 群構造をどう考えるか, 相互作用が高次元データセットでどのように見られるかを示す。
提案手法の利点と有効性について考察した。
その結果、相互作用効果の存在は2段階の促進に含まれる場合のみ予測力を改善することが示唆された。
すべてのタイプの脆弱性を予測する上で最も重要な変数は自然資産である。
その他の重要な変数は灌水の種類、経済資産、近辺の農場の作物被害の存在である。
関連論文リスト
- Diffusion-based subsurface multiphysics monitoring and forecasting [4.2193475197905705]
本稿では,ビデオ拡散モデルを用いた新しい地下マルチ物理モニタリングおよび予測フレームワークを提案する。
このアプローチは、CO$2$進化の高品質な表現と、それに伴う地下弾性特性の変化を生成することができる。
コンパスモデルに基づく実験では,CO$モニタリングに関連する本質的に複雑な物理現象を,提案手法がうまく捉えることができた。
論文 参考訳(メタデータ) (2024-07-25T23:04:37Z) - Enhancing Variable Importance in Random Forests: A Novel Application of Global Sensitivity Analysis [0.9954382983583578]
本研究は,Global Sensitivity Analysisをランダムフォレストなどの教師あり機械学習手法に適用する。
グローバル感度解析は、入力変数の不確かさが出力に与える影響を調べるために主に数学的モデリングで用いられる。
シミュレーション研究により,提案手法は,効率,説明能力,あるいは既存の結果の確認方法によって,どのような進歩が達成できるかを探索するために有効であることが示唆された。
論文 参考訳(メタデータ) (2024-07-19T10:45:36Z) - Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing [6.65506917941232]
本研究では,アルゼンチン,ウルグアイ,ドイツにおけるダイズ,小麦,ラピセド作物の収量予測の課題に焦点をあてる。
我々の目標は、衛星画像の大規模なデータセット、追加のデータモダリティ、収量マップを用いて、これらの作物の予測モデルを開発し、説明することである。
モデル説明可能性について,入力特徴量の定量化,重要な成長段階の同定,フィールドレベルでの収量変動の解析,精度の低い予測を行う。
論文 参考訳(メタデータ) (2024-07-11T08:23:46Z) - Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping [0.24578723416255746]
特徴の選択は、モデルの解釈可能性を高める上で重要な役割を担います。
決定木を集約することで得られる精度は、解釈可能性の犠牲となる。
この研究では、教師なしランダムな森林から特徴グラフを構築するための新しい手法を紹介した。
論文 参考訳(メタデータ) (2024-04-27T12:47:37Z) - Naïve Bayes and Random Forest for Crop Yield Prediction [0.0]
本研究は、1997年から2020年までのインドにおける作物収量予測を、様々な作物や重要な環境要因に着目して分析した。
これは、線形回帰、決定木、KNN、ナイーブベイズ、K平均クラスタリング、ランダムフォレストといった先進的な機械学習技術を活用することで、農業の収量を予測することを目的としている。
論文 参考訳(メタデータ) (2024-04-23T16:55:45Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
本稿では,近隣相互作用に基づくCTR予測を提案し,そのタスクを異種情報ネットワーク(HIN)設定に組み込む。
周辺地域の表現を高めるために,ノード間のトポロジカルな相互作用を4種類検討する。
本研究では,2つの実世界のデータセットに関する総合的な実験を行い,提案手法が最先端のCTRモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2022-01-25T12:44:23Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。