論文の概要: Human Values in Multiagent Systems
- arxiv url: http://arxiv.org/abs/2305.02739v1
- Date: Thu, 4 May 2023 11:23:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-05 16:03:37.104935
- Title: Human Values in Multiagent Systems
- Title(参考訳): マルチエージェントシステムにおける人的価値
- Authors: Nardine Osman and Mark d'Inverno
- Abstract要約: 本稿では,社会科学における価値の形式的表現について述べる。
我々は,この形式的表現を用いて,マルチエージェントシステムにおける価値整合性を実現する上で重要な課題を明確化する。
- 参考スコア(独自算出の注目度): 3.5027291542274357
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One of the major challenges we face with ethical AI today is developing
computational systems whose reasoning and behaviour are provably aligned with
human values. Human values, however, are notorious for being ambiguous,
contradictory and ever-changing. In order to bridge this gap, and get us closer
to the situation where we can formally reason about implementing values into
AI, this paper presents a formal representation of values, grounded in the
social sciences. We use this formal representation to articulate the key
challenges for achieving value-aligned behaviour in multiagent systems (MAS)
and a research roadmap for addressing them.
- Abstract(参考訳): 今日の倫理的AIで直面する大きな課題の1つは、推論と行動が人間の価値観と確実に一致している計算システムを開発することである。
しかし、人間の価値観は曖昧で矛盾し、変化し続けることで悪名高い。
このギャップを埋め、私たちが正式にAIに価値を実装することを理にかなっている状況に近づくために、この論文は社会科学に根ざした価値の形式的な表現を提示する。
この形式的表現を用いて,マルチエージェントシステム(MAS)における価値整合性を実現する上での重要な課題と,それに対応するための研究ロードマップを述べる。
関連論文リスト
- A Moral Imperative: The Need for Continual Superalignment of Large Language Models [1.0499611180329806]
スーパーアライメント(Superalignment)は、超知能AIシステムが人間の価値観や目標に応じて行動することを確実にする理論フレームワークである。
本稿では,AIシステム,特に大規模言語モデル(LLM)における生涯的スーパーアライメントの実現に関わる課題について検討する。
論文 参考訳(メタデータ) (2024-03-13T05:44:50Z) - Modelling Human Values for AI Reasoning [2.320648715016106]
我々は,その明示的な計算表現のために,人間の値の形式モデルを詳述する。
我々は、このモデルが、価値に対するAIベースの推論の基礎となる装置をいかに提供できるかを示す。
我々は、AIにおける人間の価値を統合し、学際的に研究するためのロードマップを提案する。
論文 参考訳(メタデータ) (2024-02-09T12:08:49Z) - Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights, and Duties [68.66719970507273]
価値多元性とは、複数の正しい値が互いに緊張して保持されるという考え方である。
統計的学習者として、AIシステムはデフォルトで平均に適合する。
ValuePrismは、218kの値、権利、義務の大規模なデータセットで、31kの人間が記述した状況に関連付けられています。
論文 参考訳(メタデータ) (2023-09-02T01:24:59Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z) - A computational framework of human values for ethical AI [3.5027291542274357]
価値は倫理的AIを設計する手段を提供する。
値の形式的、計算的な定義はまだ提案されていない。
我々はこれを、社会科学に根ざした形式的な概念的枠組みを通じて解決する。
論文 参考訳(メタデータ) (2023-05-04T11:35:41Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Modeling Moral Choices in Social Dilemmas with Multi-Agent Reinforcement
Learning [4.2050490361120465]
ボトムアップ学習アプローチは、AIエージェントの倫理的行動の研究と開発にもっと適しているかもしれない。
本稿では,道徳理論に基づく報酬を内在的に動機づけたRLエージェントによる選択の体系的分析を行う。
我々は、異なる種類の道徳が協力、欠陥、搾取の出現に与える影響を分析する。
論文 参考訳(メタデータ) (2023-01-20T09:36:42Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - Aligning AI With Shared Human Values [85.2824609130584]
私たちは、正義、幸福、義務、美徳、常識道徳の概念にまたがる新しいベンチマークであるETHICSデータセットを紹介します。
現在の言語モデルは、基本的な人間の倫理的判断を予測できる有望だが不完全な能力を持っている。
私たちの研究は、今日の機械倫理の進歩を示しており、人間の価値観に合わせたAIへの足掛かりを提供する。
論文 参考訳(メタデータ) (2020-08-05T17:59:16Z) - Modelos din\^amicos aplicados \`a aprendizagem de valores em
intelig\^encia artificial [0.0]
この地域の数人の研究者が、人間と環境の保存のための堅牢で有益な、安全なAIの概念を開発した。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
おそらくこの難しさは、認知的手法を使って価値を表現するという問題に対処する方法から来ています。
論文 参考訳(メタデータ) (2020-07-30T00:56:11Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
経済的な実体の行動に最も類似したAIの領域は道徳的に良い意思決定の領域であるようだ。
近年のAIにおけるディープラーニングの成功は、そのような問題を解決するための明示的な仕様よりも暗黙的な仕様の方が優れていることを示唆している。
論文 参考訳(メタデータ) (2019-12-29T17:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。