論文の概要: Data-driven and Physics Informed Modelling of Chinese Hamster Ovary Cell
Bioreactors
- arxiv url: http://arxiv.org/abs/2305.03257v1
- Date: Fri, 5 May 2023 03:09:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 15:26:51.488164
- Title: Data-driven and Physics Informed Modelling of Chinese Hamster Ovary Cell
Bioreactors
- Title(参考訳): 中国ハムスター卵巣細胞バイオリアクターのデータ駆動および物理インフォームドモデリング
- Authors: Tianqi Cui, Tom S. Bertalan, Nelson Ndahiro, Pratik Khare, Michael
Betenbaugh, Costas Maranas, Ioannis G. Kevrekidis
- Abstract要約: プロセスデータから,中国のハムスター卵巣細胞バイオリアクターの動的進化のモデルを学ぶためのデータ駆動ハイブリッドモデルを提案する。
我々は,過剰に決定された代謝生物物理系の凸最適化ステップを,我々のアーキテクチャに分化可能なフィードフォワード層としてエンコードする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fed-batch culture is an established operation mode for the production of
biologics using mammalian cell cultures. Quantitative modeling integrates both
kinetics for some key reaction steps and optimization-driven metabolic flux
allocation, using flux balance analysis; this is known to lead to certain
mathematical inconsistencies. Here, we propose a physically-informed
data-driven hybrid model (a "gray box") to learn models of the dynamical
evolution of Chinese Hamster Ovary (CHO) cell bioreactors from process data.
The approach incorporates physical laws (e.g. mass balances) as well as kinetic
expressions for metabolic fluxes. Machine learning (ML) is then used to (a)
directly learn evolution equations (black-box modelling); (b) recover unknown
physical parameters ("white-box" parameter fitting) or -- importantly -- (c)
learn partially unknown kinetic expressions (gray-box modelling). We encode the
convex optimization step of the overdetermined metabolic biophysical system as
a differentiable, feed-forward layer into our architectures, connecting partial
physical knowledge with data-driven machine learning.
- Abstract(参考訳): フェドバッチ培養は哺乳類の細胞培養を用いた生物生産のための確立された操作モードである。
定量的モデリングは、いくつかの重要な反応ステップの運動量と、フラックスバランス解析を用いた最適化駆動代謝束の割り当ての両方を統合する。
本稿では,プロセスデータからチャイニーズハムスター卵巣(cho)細胞バイオリアクターの動的進化モデルを学ぶために,物理的に変形したデータ駆動ハイブリッドモデル(gray box)を提案する。
このアプローチには物理法則(例えば質量収支)と代謝束の運動論的表現が組み込まれている。
機械学習(ML)が使われる。
(a)進化方程式を直接学習する(ブラックボックスモデリング)
(b)未知の物理パラメータ ("white-box"パラメータフィッティング) または --重要 --
(c)部分未知の運動式(グレーボックスモデリング)を学習する。
我々は、過度に決定された代謝生物物理システムの凸最適化ステップを、差別化可能なフィードフォワード層としてアーキテクチャにコード化し、部分的な物理知識とデータ駆動機械学習を結びつける。
関連論文リスト
- Omics-driven hybrid dynamic modeling of bioprocesses with uncertainty estimation [0.0]
この研究は、機械学習ツールを統合するオミクス駆動モデリングパイプラインを提示している。
ランダムフォレストと置換特徴の重要性は、オミクスデータセットをマイニングするために提案されている。
連続的かつ微分可能な機械学習関数は、減ったオミクス機能を動的モデルのキーコンポーネントにリンクするように訓練することができる。
論文 参考訳(メタデータ) (2024-10-24T15:50:35Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
筋骨格系と学習可能なパラメトリックハンドモデルMANOを統合し,MS-MANOを作成する。
このモデルは骨格系を駆動する筋肉と腱の力学をエミュレートし、結果として生じるトルク軌跡に生理学的に現実的な制約を与える。
また,マルチ層パーセプトロンネットワークによる初期推定ポーズを改良する,ループ式ポーズ改善フレームワークBioPRを提案する。
論文 参考訳(メタデータ) (2024-04-16T02:18:18Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box
Identification [1.8434042562191815]
本稿では,システム生物学におけるパラメータ推定と物理識別の欠如 (グレーボックス) のための新しい枠組みを提案する。
提案するフレームワーク - AI-Aristotle は,EXtreme Theory of Functional Connection (X-TFC) ドメイン分割と物理インフォームドニューラルネットワーク (PINN) を組み合わせたものだ。
システム生物学における2つのベンチマーク問題に基づいて,AI-Aristotleの精度,速度,柔軟性,堅牢性を検証した。
論文 参考訳(メタデータ) (2023-09-29T14:45:51Z) - The bionic neural network for external simulation of human locomotor
system [2.6311880922890842]
本稿では,筋骨格モデルに基づく物理インフォームド深層学習法を提案し,関節運動と筋力を予測する。
この方法は、被験者固有のMSK生理学的パラメータを効果的に同定することができ、訓練された物理インフォームドフォワード力学は、正確な動きと筋力予測をもたらす。
論文 参考訳(メタデータ) (2023-09-11T23:02:56Z) - A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics [4.878073267556235]
表面筋電図(sEMG)による筋力と関節キネマティクス推定はリアルタイム生体力学的解析に不可欠である。
ディープニューラルネットワーク(DNN)の最近の進歩は、完全に自動化され再現可能な方法で生体力学解析を改善する可能性を示している。
本稿では,筋力と関節キネマティクスのsEMGに基づく新しい物理インフォームドローショット学習法を提案する。
論文 参考訳(メタデータ) (2023-07-08T23:01:12Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Inference of cell dynamics on perturbation data using adjoint
sensitivity [4.606583317143614]
データ駆動型細胞生物学のダイナミックモデルを用いて、目に見えない摂動に対する細胞の反応を予測することができる。
最近の研究は、明示的な相互作用項を持つ解釈可能なモデルの導出を実証した。
本研究は,このモデル推論手法の適用範囲を生物システムの多様性に拡張することを目的としている。
論文 参考訳(メタデータ) (2021-04-13T19:15:56Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。