Solution existence, uniqueness, and stability of discrete basis
sinograms in multispectral CT
- URL: http://arxiv.org/abs/2305.03330v1
- Date: Fri, 5 May 2023 07:22:20 GMT
- Title: Solution existence, uniqueness, and stability of discrete basis
sinograms in multispectral CT
- Authors: Yu Gao and Xiaochuan Pan and Chong Chen
- Abstract summary: This work investigates conditions for quantitative image reconstruction in multispectral computed tomography (MSCT)
An empirical, but highly effective, two-step data-domain-decomposition (DDD) method has been developed and used widely for quantitative image reconstruction in MSCT.
- Score: 4.084909224028198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work investigates conditions for quantitative image reconstruction in
multispectral computed tomography (MSCT), which remains a topic of active
research. In MSCT, one seeks to obtain from data the spatial distribution of
linear attenuation coefficient, referred to as a virtual monochromatic image
(VMI), at a given X-ray energy, within the subject imaged. As a VMI is
decomposed often into a linear combination of basis images with known
decomposition coefficients, the reconstruction of a VMI is thus tantamount to
that of the basis images. An empirical, but highly effective, two-step
data-domain-decomposition (DDD) method has been developed and used widely for
quantitative image reconstruction in MSCT. In the two-step DDD method, step (1)
estimates the so-called basis sinogram from data through solving a nonlinear
transform, whereas step (2) reconstructs basis images from their basis
sinograms estimated. Subsequently, a VMI can readily be obtained from the
linear combination of basis images reconstructed. As step (2) involves the
inversion of a straightforward linear system, step (1) is the key component of
the DDD method in which a nonlinear system needs to be inverted for estimating
the basis sinograms from data. In this work, we consider a {\it discrete} form
of the nonlinear system in step (1), and then carry out theoretical and
numerical analyses of conditions on the existence, uniqueness, and stability of
a solution to the discrete nonlinear system for accurately estimating the
discrete basis sinograms, leading to quantitative reconstruction of VMIs in
MSCT.
Related papers
- End-to-End Model-based Deep Learning for Dual-Energy Computed Tomography Material Decomposition [53.14236375171593]
We propose a deep learning procedure called End-to-End Material Decomposition (E2E-DEcomp) for quantitative material decomposition.
We show the effectiveness of the proposed direct E2E-DEcomp method on the AAPM spectral CT dataset.
arXiv Detail & Related papers (2024-06-01T16:20:59Z) - Ray-driven Spectral CT Reconstruction Based on Neural Base-Material Fields [10.684377265644045]
In spectral CT reconstruction, the basis materials decomposition involves solving a large-scale nonlinear system of integral equations.
This paper proposes a model that parameterizes the attenuation coefficients of the object using a neural field representation.
It introduces a lightweight discretization method for line integrals based on a ray-driven neural field.
arXiv Detail & Related papers (2024-04-10T13:10:52Z) - N-representable one-electron reduced density matrix reconstruction with
frozen core electrons [0.0]
Recent advances in quantum crystallography have shown that a one-electron reduced density matrix (1-RDM) satisfying N-representability conditions can be reconstructed.
An improved model, including symmetry constraints and frozen-core electron contribution, is introduced to better handle the increasing system complexity.
The robustness of the model and the strategy are shown to be well-adapted to address the reconstruction problem from actual experimental scattering data.
arXiv Detail & Related papers (2024-03-01T13:48:05Z) - Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction [60.95625458395291]
In computed tomography (CT) the forward model consists of a linear transform followed by an exponential nonlinearity based on the attenuation of light according to the Beer-Lambert Law.
We show that this approach reduces metal artifacts compared to a commercial reconstruction of a human skull with metal crowns.
arXiv Detail & Related papers (2023-10-06T00:47:57Z) - Self-Supervised Coordinate Projection Network for Sparse-View Computed
Tomography [31.774432128324385]
We propose a Self-supervised COordinate Projection nEtwork (SCOPE) to reconstruct the artifacts-free CT image from a single SV sinogram.
Compared with recent related works that solve similar problems using implicit neural representation network (INR), our essential contribution is an effective and simple re-projection strategy.
arXiv Detail & Related papers (2022-09-12T06:14:04Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - Accelerated MRI With Deep Linear Convolutional Transform Learning [7.927206441149002]
Recent studies show that deep learning based MRI reconstruction outperforms conventional methods in multiple applications.
In this work, we combine ideas from CS, TL and DL reconstructions to learn deep linear convolutional transforms.
Our results show that the proposed technique can reconstruct MR images to a level comparable to DL methods, while supporting uniform undersampling patterns.
arXiv Detail & Related papers (2022-04-17T04:47:32Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Unsupervised Image Registration Towards Enhancing Performance and
Explainability in Cardiac And Brain Image Analysis [3.5718941645696485]
Inter- and intra-modality affine and non-rigid image registration is an essential medical image analysis process in clinical imaging.
We present an un-supervised deep learning registration methodology which can accurately model affine and non-rigid trans-formations.
Our methodology performs bi-directional cross-modality image synthesis to learn modality-invariant latent rep-resentations.
arXiv Detail & Related papers (2022-03-07T12:54:33Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.