Biophysical Cybernetics of Directed Evolution and Eco-evolutionary
Dynamics
- URL: http://arxiv.org/abs/2305.03340v1
- Date: Fri, 5 May 2023 07:45:28 GMT
- Title: Biophysical Cybernetics of Directed Evolution and Eco-evolutionary
Dynamics
- Authors: Bryce Allen Bagley
- Abstract summary: We introduce a duality which maps the complexity of accounting for both ecology and individual genotypic/phenotypic types.
We attack the problem of "directed evolution" in the form of a Partially Observable Markov Decision Process.
This provides a tractable case of studying eco-evolutionary trajectories of a highly general type.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many major questions in the theory of evolutionary dynamics can in a
meaningful sense be mapped to analyses of stochastic trajectories in game
theoretic contexts. Often the approach is to analyze small numbers of distinct
populations and/or to assume dynamics occur within a regime of population sizes
large enough that deterministic trajectories are an excellent approximation of
reality. The addition of ecological factors, termed "eco-evolutionary
dynamics", further complicates the dynamics and results in many problems which
are intractable or impractically messy for current theoretical methods.
However, an analogous but underexplored approach is to analyze these systems
with an eye primarily towards uncertainty in the models themselves. In the
language of researchers in Reinforcement Learning and adjacent fields, a
Partially Observable Markov Process. Here we introduce a duality which maps the
complexity of accounting for both ecology and individual genotypic/phenotypic
types onto a problem of accounting solely for underlying information-theoretic
computations rather than drawing physical boundaries which do not change the
computations. Armed with this equivalence between computation and the relevant
biophysics, which we term Taak-duality, we attack the problem of "directed
evolution" in the form of a Partially Observable Markov Decision Process. This
provides a tractable case of studying eco-evolutionary trajectories of a highly
general type, and of analyzing questions of potential limits on the efficiency
of evolution in the directed case.
Related papers
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
We aim to develop flexible identification conditions for multimodal data.
We establish identifiability guarantees for each latent component, extending the subspace identification results from prior work.
Our key theoretical ingredient is the structural sparsity of the causal connections among distinct modalities.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Exploring the Dynamics of Lotka-Volterra Systems: Efficiency, Extinction Order, and Predictive Machine Learning [0.0]
We show how trophic efficiency produces systems which are not persistent.
We show how straightforward inequalities of the summed values of the birth, death, self-regulation and interaction strengths provide insight into which food webs are more enduring or stable.
arXiv Detail & Related papers (2024-10-14T18:29:55Z) - Deep Signature: Characterization of Large-Scale Molecular Dynamics [29.67824486345836]
Deep Signature is a novel computationally tractable framework that characterizes complex dynamics and interatomic interactions.
Our approach incorporates soft spectral clustering that locally aggregates cooperative dynamics to reduce the size of the system, as well as signature transform to provide a global characterization of the non-smooth interactive dynamics.
arXiv Detail & Related papers (2024-10-03T16:37:48Z) - Towards Definition of Higher Order Causality in Complex Systems [0.0]
We propose a generalization and refinement of the information-theoretic approach to causal inference.
In particular, we ascribe the causal role to the multivariate causal set but emphnot to individual inputs.
We demonstrate this concept by application to illustrative theoretical examples as well as a biophysically realistic simulation of biological neuronal dynamics.
arXiv Detail & Related papers (2024-08-30T12:04:51Z) - Phylogeny-Informed Interaction Estimation Accelerates Co-Evolutionary Learning [42.642008092347986]
We introduce phylogeny-informed interaction estimation, which uses phylogenetic analysis to estimate interaction outcomes.
We find that phylogeny-informed estimation can substantially reduce the computation required to solve problems.
arXiv Detail & Related papers (2024-04-09T19:29:19Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
We introduce the framework of generative flow networks (GFlowNets) to tackle two core problems in phylogenetics: parsimony-based and phylogenetic inference.
Because GFlowNets are well-suited for sampling complex structures, they are a natural choice for exploring and sampling from the multimodal posterior distribution over tree topologies.
We demonstrate that our amortized posterior sampler, PhyloGFN, produces diverse and high-quality evolutionary hypotheses on real benchmark datasets.
arXiv Detail & Related papers (2023-10-12T23:46:08Z) - GeoPhy: Differentiable Phylogenetic Inference via Geometric Gradients of
Tree Topologies [0.3263412255491401]
We introduce a novel, fully differentiable formulation of phylogenetic inference that leverages a unique representation of topological distributions in continuous geometric spaces.
In experiments using real benchmark datasets, GeoPhy significantly outperformed other approximate Bayesian methods that considered whole topologies.
arXiv Detail & Related papers (2023-07-07T15:45:05Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - Embodied Intelligence via Learning and Evolution [92.26791530545479]
We show that environmental complexity fosters the evolution of morphological intelligence.
We also show that evolution rapidly selects morphologies that learn faster.
Our experiments suggest a mechanistic basis for both the Baldwin effect and the emergence of morphological intelligence.
arXiv Detail & Related papers (2021-02-03T18:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.