Towards Definition of Higher Order Causality in Complex Systems
- URL: http://arxiv.org/abs/2409.08295v1
- Date: Fri, 30 Aug 2024 12:04:51 GMT
- Title: Towards Definition of Higher Order Causality in Complex Systems
- Authors: Jakub KoĊenek, Pavel Sanda, Jaroslav Hlinka,
- Abstract summary: We propose a generalization and refinement of the information-theoretic approach to causal inference.
In particular, we ascribe the causal role to the multivariate causal set but emphnot to individual inputs.
We demonstrate this concept by application to illustrative theoretical examples as well as a biophysically realistic simulation of biological neuronal dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The description of the dynamics of complex systems, in particular the capture of the interaction structure and causal relationships between elements of the system, is one of the central questions of interdisciplinary research. While the characterization of pairwise causal interactions is a relatively ripe field with established theoretical concepts and the current focus is on technical issues of their efficient estimation, it turns out that the standard concepts such as Granger causality or transfer entropy may not faithfully reflect possible synergies or interactions of higher orders, phenomena highly relevant for many real-world complex systems. In this paper, we propose a generalization and refinement of the information-theoretic approach to causal inference, enabling the description of truly multivariate, rather than multiple pairwise, causal interactions, and moving thus from causal networks to causal hypernetworks. In particular, while keeping the ability to control for mediating variables or common causes, in case of purely synergetic interactions such as the exclusive disjunction, it ascribes the causal role to the multivariate causal set but \emph{not} to individual inputs, distinguishing it thus from the case of e.g. two additive univariate causes. We demonstrate this concept by application to illustrative theoretical examples as well as a biophysically realistic simulation of biological neuronal dynamics recently reported to employ synergetic computations.
Related papers
- Inferring the time-varying coupling of dynamical systems with temporal convolutional autoencoders [0.0]
We introduce Temporal Autoencoders for Causal Inference (TACI)
TACI combines a new surrogate data metric for assessing causal interactions with a novel two-headed machine learning architecture.
We demonstrate TACI's ability to accurately quantify dynamic causal interactions across a variety of systems.
arXiv Detail & Related papers (2024-06-05T12:51:20Z) - Emergence and Causality in Complex Systems: A Survey on Causal Emergence
and Related Quantitative Studies [12.78006421209864]
Causal emergence theory employs measures of causality to quantify emergence.
Two key problems are addressed: quantifying causal emergence and identifying it in data.
We highlighted that the architectures used for identifying causal emergence are shared by causal representation learning, causal model abstraction, and world model-based reinforcement learning.
arXiv Detail & Related papers (2023-12-28T04:20:46Z) - Targeted Reduction of Causal Models [55.11778726095353]
Causal Representation Learning offers a promising avenue to uncover interpretable causal patterns in simulations.
We introduce Targeted Causal Reduction (TCR), a method for condensing complex intervenable models into a concise set of causal factors.
Its ability to generate interpretable high-level explanations from complex models is demonstrated on toy and mechanical systems.
arXiv Detail & Related papers (2023-11-30T15:46:22Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - Collective Relational Inference for learning heterogeneous interactions [8.215734914005845]
We propose a novel probabilistic method for relational inference, which possesses two distinctive characteristics compared to existing methods.
We evaluate the proposed methodology across several benchmark datasets and demonstrate that it outperforms existing methods in accurately inferring interaction types.
Overall the proposed model is data-efficient and generalizable to large systems when trained on smaller ones.
arXiv Detail & Related papers (2023-04-30T19:45:04Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - Neural Relational Inference with Efficient Message Passing Mechanisms [10.329082213561785]
This paper introduces efficient message passing mechanisms to the graph neural networks with structural prior knowledge to address these problems.
A relation interaction mechanism is proposed to capture the coexistence of all relations and atemporal message passing mechanism is proposed to use historical information to alleviate error accumulation.
arXiv Detail & Related papers (2021-01-23T11:27:31Z) - Emergence of disconnected clusters in heterogeneous complex systems [0.0]
We show that highly correlated sites in complex systems can be inherently disconnected.
This finding indicates a counter-intuitive organization of dynamical correlations, where similarity decouples from physical connectivity.
arXiv Detail & Related papers (2020-12-01T12:45:59Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.