論文の概要: Reinforcement Learning for Control of Evolutionary and Ecological Processes
- arxiv url: http://arxiv.org/abs/2305.03340v2
- Date: Thu, 02 Jan 2025 03:38:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 14:33:14.539628
- Title: Reinforcement Learning for Control of Evolutionary and Ecological Processes
- Title(参考訳): 進化・生態過程の制御のための強化学習
- Authors: Bryce Allen Bagley, Navin Khoshnan, Claudia K Petritsch,
- Abstract要約: 本稿では,エコロジーと生理学の両方を計算としてモデル化し,進化ゲームの定式化を導入する。
我々は,進化する細胞の個体群を制御するためのアルゴリズム的問題に対して,その先駆的な結果を開発した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As Evolutionary Dynamics moves from the realm of theory into application, algorithms are needed to move beyond simple models. Yet few such methods exist in the literature. Ecological and physiological factors are known to be central to evolution in realistic contexts, but accounting for them generally renders problems intractable to existing methods. We introduce a formulation of evolutionary games which accounts for ecology and physiology by modeling both as computations and use this to analyze the problem of directed evolution via methods from Reinforcement Learning. This combination enables us to develop first-of-their-kind results on the algorithmic problem of learning to control an evolving population of cells. We prove a complexity bound on eco-evolutionary control in situations with limited prior knowledge of cellular physiology or ecology, give the first results on the most general version of the mathematical problem of directed evolution, and establish a new link between AI and biology.
- Abstract(参考訳): 進化力学は理論の領域から応用へと移行するので、アルゴリズムは単純なモデルを超えて移動する必要がある。
文献にはそのような方法はほとんど存在しない。
生態学的および生理的要因は、現実的な文脈において進化の中心であることが知られているが、それらを説明することは、一般に既存の方法に難解な問題を生じさせる。
本稿では,生態学と生理学の両方をモデル化し,これを用いて強化学習の手法による方向性進化の問題を解析する進化ゲームの定式化について紹介する。
この組み合わせにより、進化する細胞の個体群を制御するための学習のアルゴリズム的問題に対して、先駆的な結果が得られる。
我々は、細胞生理学や生態学の知識が限られている状況において、エコ進化制御に縛られる複雑さを証明し、有向進化の数学的問題の最も一般的なバージョンに関する最初の結果を与え、AIと生物学の新たなリンクを確立する。
関連論文リスト
- The Origin and Evolution of Information Handling [0.6963971634605796]
情報ファーストアプローチは、ホフメイユの(F, A)-システムと時間的パラメトリゼーションとマルチスケール因果関係を統合する。
我々のモデルは、正規言語を認識する単純な反応ネットワークから、記憶と予測能力を備えた自己複製化学システムまで、情報処理の進化を辿る。
論文 参考訳(メタデータ) (2024-04-05T19:35:38Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Role of Morphogenetic Competency on Evolution [0.0]
進化計算において、逆関係(進化に関する知性の影響)は、生物レベルの振る舞いの観点からアプローチされる。
我々は、解剖学的形態空間をナビゲートするシステムの最小限のモデルの知性に焦点を当てる。
我々はシリコの標準遺伝アルゴリズムを用いて人工胚の個体群を進化させた。
論文 参考訳(メタデータ) (2023-10-13T11:58:18Z) - Phylogeny-informed fitness estimation [58.720142291102135]
本研究では, 住民の健康評価を推定するために, フィロジェニーを利用した適合度推定手法を提案する。
以上の結果から, 植物性インフォームドフィットネス推定は, ダウンサンプドレキシケースの欠点を軽減することが示唆された。
この研究は、ランタイム系統解析を利用して進化アルゴリズムを改善するための最初のステップとなる。
論文 参考訳(メタデータ) (2023-06-06T19:05:01Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Towards a Theory of Evolution as Multilevel Learning [0.0]
生命の起源を含む生物学的進化の理論を多段階学習として発展させるために, 物理的に再正規化可能なシステムに学習理論を適用した。
我々は、宇宙を観測可能なものにするのに必要で十分と思われる進化の7つの基本原理を定式化する。
これらの原理は、複製や自然選択を含む生物進化の主要な特徴を包含していることを示す。
論文 参考訳(メタデータ) (2021-10-27T17:21:16Z) - Embodied Intelligence via Learning and Evolution [92.26791530545479]
環境の複雑さが形態学的知能の進化を促進することを示す。
また、進化は速く学習する形態を素早く選択することを示した。
我々の実験は、ボールドウィン効果とモルフォロジーインテリジェンスの発生の両方の力学的基礎を示唆している。
論文 参考訳(メタデータ) (2021-02-03T18:58:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。