論文の概要: The Origin and Evolution of Information Handling
- arxiv url: http://arxiv.org/abs/2404.04374v5
- Date: Fri, 07 Feb 2025 16:54:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:53:25.146403
- Title: The Origin and Evolution of Information Handling
- Title(参考訳): 情報処理の起源と進化
- Authors: Amahury Jafet López-Díaz, Hiroki Sayama, Carlos Gershenson,
- Abstract要約: 情報ファーストアプローチは、ホフメイユの(F, A)-システムと時間的パラメトリゼーションとマルチスケール因果関係を統合する。
我々のモデルは、正規言語を認識する単純な反応ネットワークから、記憶と予測能力を備えた自己複製化学システムまで、情報処理の進化を辿る。
- 参考スコア(独自算出の注目度): 0.6963971634605796
- License:
- Abstract: Understanding the emergence and evolution of information handling is essential for unraveling the origins of life. Traditional genetic-first and metabolism-first models fall short in explaining how instructional information control systems naturally arise from molecular dynamics. To address this gap, we adopt an information-first approach, integrating Hofmeyr's (F, A)-systems -- an extension of Rosen's (M, R)-systems -- with temporal parametrization and multiscale causality. These models, which embody closure to efficient causation while remaining open to formal causation, provide a robust framework for primitive autopoiesis, anticipation, and adaptation. We establish a formal equivalence between extended (F, A)-systems and communicating X-machines, resolving self-referential challenges and demonstrating the hypercomputational nature of life processes. Our stepwise model traces the evolution of information handling from simple reaction networks that recognize regular languages to self-replicating chemical systems with memory and anticipatory capabilities. This transition from analog to digital architectures enhances evolutionary robustness and aligns with experimental evidence suggesting that chemical computation does not require life-specific chemistry. Furthermore, we incorporate open-ended evolutionary dynamics driven by computational undecidability and irreducibility, reinforcing the necessity of unconventional computing frameworks. This computational enactivist perspective provides a cohesive theoretical basis for a recently proposed trialectic between autopoiesis, anticipation and adaptation in order to solve the problem of relevance. By highlighting the critical role of hypercomputational processes in life's emergence and evolution, our framework offers new insights into the fundamental principles underlying biological information processing.
- Abstract(参考訳): 生命の起源を明らかにするためには、情報処理の出現と進化を理解することが不可欠である。
従来の遺伝第一モデルと代謝第一モデルでは、インストラクショナル情報制御システムが分子動力学から自然に生じる方法を説明できない。
このギャップに対処するため、Hofmeyrの(F, A)-systems -- Rosenの(M, R)-systemsの拡張 -- を時間的パラメトリゼーションとマルチスケール因果関係に組み込む、情報優先のアプローチを採用する。
これらのモデルは、正式な因果関係を保ちながら効率的な因果関係への閉包を具現化したものであり、原始的自己ポエシス、予測、適応のための堅牢な枠組みを提供する。
我々は、拡張(F, A)-システムとX-マシン間の形式的等価性を確立し、自己参照的課題を解決し、生命プロセスの超計算的性質を実証する。
我々のステップワイドモデルは、通常の言語を認識する単純な反応ネットワークから、記憶と予測能力を備えた自己複製化学システムまで、情報処理の進化を辿る。
このアナログからデジタルアーキテクチャへの遷移は、進化的堅牢性を高め、化学計算が生命固有の化学を必要としないことを示す実験的証拠と一致している。
さらに、計算的不決定性と既約性によって駆動されるオープンな進化力学を取り入れ、非伝統的な計算フレームワークの必要性を補強する。
この計算実践主義的観点は、関連性の問題を解決するために、最近提案されたオートポエシス、予測、適応の間の試行錯誤の結束的な理論的基礎を提供する。
生命の出現と進化における超コンピュータプロセスの重要な役割を強調することで、我々のフレームワークは生物学的情報処理の基礎となる基本原理に関する新たな洞察を提供する。
関連論文リスト
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
本研究では,98k塩基対 (bp) と1.2Bパラメータからなるゲノム基盤モデルを提案する。
このモデルは分子生物学の中心的なドグマに固執し、タンパク質のコード配列を正確に生成する。
また、特にプロモーター配列の即応的な生成を通じて、シーケンス最適化において大きな可能性を示している。
論文 参考訳(メタデータ) (2025-02-11T05:39:49Z) - No Foundations without Foundations -- Why semi-mechanistic models are essential for regulatory biology [5.925258390690544]
規制生物学の真の「基礎モデル」は、機械的洞察を原理化された実験設計と統合するフレームワークによってガイドされない限り、手の届かないままである、と我々は主張する。
本稿では、摂動に基づく実験設計を統一する基礎的な半機械的枠組みを提案する。
論文 参考訳(メタデータ) (2025-01-31T14:43:16Z) - No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - Rethinking Cognition: Morphological Info-Computation and the Embodied Paradigm in Life and Artificial Intelligence [1.14219428942199]
本研究の目的は,情報,計算,認知に関する現在の研究のより広い文脈に,ロレンツォ・マグナニス・エコ認知計算主義を配置することである。
我々は、認知を、物理的、化学的、生物学的領域にまたがる自己集合、自己組織化、自己ポエシスのプロセスによって駆動される、同時モルフォロジー計算の網としてモデル化する。
論文 参考訳(メタデータ) (2024-12-01T10:04:53Z) - Deep Signature: Characterization of Large-Scale Molecular Dynamics [29.67824486345836]
ディープシグナチャ(Deep Signature)は、複雑な力学と原子間相互作用を特徴付ける、計算的に抽出可能な新しいフレームワークである。
提案手法では,協調力学を局所的に集約してシステムのサイズを小さくするソフトスペクトルクラスタリングと,非滑らかな対話力学のグローバルな評価を行うシグネチャ変換を取り入れた。
論文 参考訳(メタデータ) (2024-10-03T16:37:48Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Evolution TANN and the discovery of the internal variables and evolution
equations in solid mechanics [0.0]
材料表現をインクリメンタルな定式化から切り離す新しい手法を提案する。
熱力学に基づくニューラルネットワーク(TANN)と内部変数の理論にインスパイアされた進化 TANN(eTANN)は、連続時間である。
提案手法の主な特徴は、通常の微分方程式の形で内部変数の進化方程式の発見である。
論文 参考訳(メタデータ) (2022-09-27T09:25:55Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
ICA(Independent component analysis)は、この目的を定式化し、実用的な応用のための推定手順を提供する手法の集合を指す。
潜伏変数は、潜伏機構をスパースに正則化すれば、置換まで復元可能であることを示す。
論文 参考訳(メタデータ) (2021-07-21T14:22:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。