Reinforcement Learning for Control of Evolutionary and Ecological Processes
- URL: http://arxiv.org/abs/2305.03340v2
- Date: Thu, 02 Jan 2025 03:38:12 GMT
- Title: Reinforcement Learning for Control of Evolutionary and Ecological Processes
- Authors: Bryce Allen Bagley, Navin Khoshnan, Claudia K Petritsch,
- Abstract summary: We introduce a formulation of evolutionary games which accounts for ecology and physiology by modeling both as computations.<n>We develop first-of-their-kind results on the algorithmic problem of learning to control an evolving population of cells.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As Evolutionary Dynamics moves from the realm of theory into application, algorithms are needed to move beyond simple models. Yet few such methods exist in the literature. Ecological and physiological factors are known to be central to evolution in realistic contexts, but accounting for them generally renders problems intractable to existing methods. We introduce a formulation of evolutionary games which accounts for ecology and physiology by modeling both as computations and use this to analyze the problem of directed evolution via methods from Reinforcement Learning. This combination enables us to develop first-of-their-kind results on the algorithmic problem of learning to control an evolving population of cells. We prove a complexity bound on eco-evolutionary control in situations with limited prior knowledge of cellular physiology or ecology, give the first results on the most general version of the mathematical problem of directed evolution, and establish a new link between AI and biology.
Related papers
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
We aim to develop flexible identification conditions for multimodal data.
We establish identifiability guarantees for each latent component, extending the subspace identification results from prior work.
Our key theoretical ingredient is the structural sparsity of the causal connections among distinct modalities.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Exploring the Dynamics of Lotka-Volterra Systems: Efficiency, Extinction Order, and Predictive Machine Learning [0.0]
We show how trophic efficiency produces systems which are not persistent.
We show how straightforward inequalities of the summed values of the birth, death, self-regulation and interaction strengths provide insight into which food webs are more enduring or stable.
arXiv Detail & Related papers (2024-10-14T18:29:55Z) - Deep Signature: Characterization of Large-Scale Molecular Dynamics [29.67824486345836]
Deep Signature is a novel computationally tractable framework that characterizes complex dynamics and interatomic interactions.
Our approach incorporates soft spectral clustering that locally aggregates cooperative dynamics to reduce the size of the system, as well as signature transform to provide a global characterization of the non-smooth interactive dynamics.
arXiv Detail & Related papers (2024-10-03T16:37:48Z) - Towards Definition of Higher Order Causality in Complex Systems [0.0]
We propose a generalization and refinement of the information-theoretic approach to causal inference.
In particular, we ascribe the causal role to the multivariate causal set but emphnot to individual inputs.
We demonstrate this concept by application to illustrative theoretical examples as well as a biophysically realistic simulation of biological neuronal dynamics.
arXiv Detail & Related papers (2024-08-30T12:04:51Z) - Phylogeny-Informed Interaction Estimation Accelerates Co-Evolutionary Learning [42.642008092347986]
We introduce phylogeny-informed interaction estimation, which uses phylogenetic analysis to estimate interaction outcomes.
We find that phylogeny-informed estimation can substantially reduce the computation required to solve problems.
arXiv Detail & Related papers (2024-04-09T19:29:19Z) - The Origin and Evolution of Information Handling [0.6963971634605796]
Information-first approach integrates Hofmeyr's (F, A)-systems with temporal parametrization and multiscale causality.
Our model traces the evolution of information handling from simple reaction networks that recognize regular languages to self-replicating chemical systems with memory and anticipatory capabilities.
arXiv Detail & Related papers (2024-04-05T19:35:38Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Role of Morphogenetic Competency on Evolution [0.0]
In Evolutionary Computation, the inverse relationship (impact of intelligence on evolution) is approached from the perspective of organism level behaviour.
We focus on the intelligence of a minimal model of a system navigating anatomical morphospace.
We evolve populations of artificial embryos using a standard genetic algorithm in silico.
arXiv Detail & Related papers (2023-10-13T11:58:18Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
We introduce the framework of generative flow networks (GFlowNets) to tackle two core problems in phylogenetics: parsimony-based and phylogenetic inference.
Because GFlowNets are well-suited for sampling complex structures, they are a natural choice for exploring and sampling from the multimodal posterior distribution over tree topologies.
We demonstrate that our amortized posterior sampler, PhyloGFN, produces diverse and high-quality evolutionary hypotheses on real benchmark datasets.
arXiv Detail & Related papers (2023-10-12T23:46:08Z) - GeoPhy: Differentiable Phylogenetic Inference via Geometric Gradients of
Tree Topologies [0.3263412255491401]
We introduce a novel, fully differentiable formulation of phylogenetic inference that leverages a unique representation of topological distributions in continuous geometric spaces.
In experiments using real benchmark datasets, GeoPhy significantly outperformed other approximate Bayesian methods that considered whole topologies.
arXiv Detail & Related papers (2023-07-07T15:45:05Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Towards a Theory of Evolution as Multilevel Learning [0.0]
We apply the theory of learning to physically renormalizable systems in an attempt to develop a theory of biological evolution, including the origin of life, as multilevel learning.
We formulate seven fundamental principles of evolution that appear to be necessary and sufficient to render a universe observable.
We show that these principles entail the major features of biological evolution, including replication and natural selection.
arXiv Detail & Related papers (2021-10-27T17:21:16Z) - Embodied Intelligence via Learning and Evolution [92.26791530545479]
We show that environmental complexity fosters the evolution of morphological intelligence.
We also show that evolution rapidly selects morphologies that learn faster.
Our experiments suggest a mechanistic basis for both the Baldwin effect and the emergence of morphological intelligence.
arXiv Detail & Related papers (2021-02-03T18:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.