論文の概要: Sparsifying Bayesian neural networks with latent binary variables and
normalizing flows
- arxiv url: http://arxiv.org/abs/2305.03395v1
- Date: Fri, 5 May 2023 09:40:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 14:28:38.121967
- Title: Sparsifying Bayesian neural networks with latent binary variables and
normalizing flows
- Title(参考訳): 潜伏二変数と正規化フローを持つベイズ型ニューラルネットワーク
- Authors: Lars Skaaret-Lund, Geir Storvik, Aliaksandr Hubin
- Abstract要約: 潜伏二元系ベイズニューラルネットワーク(LBBNN)の2つの拡張について検討する。
まず、隠れたユニットを直接サンプリングするためにLRT(Local Reparametrization trick)を用いることで、より計算効率の良いアルゴリズムが得られる。
さらに, LBBNNパラメータの変動後分布の正規化フローを用いて, 平均体ガウス分布よりも柔軟な変動後分布を学習する。
- 参考スコア(独自算出の注目度): 10.865434331546126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial neural networks (ANNs) are powerful machine learning methods used
in many modern applications such as facial recognition, machine translation,
and cancer diagnostics. A common issue with ANNs is that they usually have
millions or billions of trainable parameters, and therefore tend to overfit to
the training data. This is especially problematic in applications where it is
important to have reliable uncertainty estimates. Bayesian neural networks
(BNN) can improve on this, since they incorporate parameter uncertainty. In
addition, latent binary Bayesian neural networks (LBBNN) also take into account
structural uncertainty by allowing the weights to be turned on or off, enabling
inference in the joint space of weights and structures. In this paper, we will
consider two extensions to the LBBNN method: Firstly, by using the local
reparametrization trick (LRT) to sample the hidden units directly, we get a
more computationally efficient algorithm. More importantly, by using
normalizing flows on the variational posterior distribution of the LBBNN
parameters, the network learns a more flexible variational posterior
distribution than the mean field Gaussian. Experimental results show that this
improves predictive power compared to the LBBNN method, while also obtaining
more sparse networks. We perform two simulation studies. In the first study, we
consider variable selection in a logistic regression setting, where the more
flexible variational distribution leads to improved results. In the second
study, we compare predictive uncertainty based on data generated from
two-dimensional Gaussian distributions. Here, we argue that our Bayesian
methods lead to more realistic estimates of predictive uncertainty.
- Abstract(参考訳): 人工知能(anns)は、顔認識、機械翻訳、がん診断など、現代の多くのアプリケーションで使用されている強力な機械学習手法である。
ANNの一般的な問題は、通常は数百万から数十億のトレーニング可能なパラメータを持ち、したがってトレーニングデータに過度に適合する傾向があることだ。
これは、信頼性の高い不確実性の推定が重要であるアプリケーションでは特に問題となる。
ベイズニューラルネットワーク(BNN)はパラメータの不確実性を含むため、この問題を改善することができる。
さらに、LBBNN(Latent binary Bayesian Neural Network)は、重みをオンまたはオフにすることで構造上の不確実性を考慮しており、重みと構造の結合空間における推論を可能にしている。
本稿では, LBBNN法の2つの拡張について考察する: まず, LRT(Local Reparametrization trick)を用いて隠れたユニットを直接サンプリングすることにより, より計算効率の良いアルゴリズムを得る。
より重要なことに、lbbnnパラメータの変分後分布の正規化フローを用いて、ネットワークは平均場ガウス値よりも柔軟な変分後分布を学習する。
実験の結果, LBBNN法に比べて予測能力が向上し, より疎ネットワークが得られることがわかった。
2つのシミュレーション研究を行う。
最初の研究では、より柔軟な変動分布がより良い結果をもたらすロジスティック回帰設定における変数選択について考察する。
本研究では,2次元ガウス分布から得られたデータに基づいて予測の不確かさを比較する。
ここではベイズ的手法が予測の不確実性のより現実的な推定につながることを論じる。
関連論文リスト
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
不確実性定量化は機械学習において重要な課題である。
本稿では,BLL を用いた NN の対数乗算可能性の再構成を行い,バックプロパゲーションを用いた効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2023-02-21T20:23:56Z) - Variational Inference on the Final-Layer Output of Neural Networks [3.146069168382982]
本稿では、最終層出力空間(VIFO)における変分推論を行うことにより、両方のアプローチの利点を組み合わせることを提案する。
ニューラルネットワークを用いて確率出力の平均と分散を学習する。
実験により、VIFOは、特に分布データ外において、実行時間と不確実性定量化の観点から良いトレードオフを提供することが示された。
論文 参考訳(メタデータ) (2023-02-05T16:19:01Z) - Constraining cosmological parameters from N-body simulations with
Variational Bayesian Neural Networks [0.0]
乗法正規化フロー (MNFs) はBNNのパラメータの近似後流の族である。
我々は,標準BNNとフリップアウト推定器についてMNFの比較を行った。
MNFは、変動近似によって導入されたバイアスを緩和する真の後部へのより現実的な予測分布を提供する。
論文 参考訳(メタデータ) (2023-01-09T16:07:48Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
我々は,BNNを大規模モデルに効率的にスケールするための時空間BNNを設計する。
バニラBNNと比較して,本手法はトレーニング時間とパラメータ数を著しく削減し,BNNのスケールアップに有効である。
論文 参考訳(メタデータ) (2021-12-12T17:13:14Z) - Kalman Bayesian Neural Networks for Closed-form Online Learning [5.220940151628734]
閉形式ベイズ推論によるBNN学習のための新しい手法を提案する。
出力の予測分布の計算と重み分布の更新をベイズフィルタおよび平滑化問題として扱う。
これにより、勾配降下のないシーケンシャル/オンライン方式でネットワークパラメータをトレーニングするためのクローズドフォーム表現が可能になる。
論文 参考訳(メタデータ) (2021-10-03T07:29:57Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Multi-fidelity Bayesian Neural Networks: Algorithms and Applications [0.0]
本稿では,可変忠実度の雑音データを用いて訓練できるベイズ型ニューラルネットワーク(BNN)を提案する。
関数近似の学習や、偏微分方程式(PDE)に基づく逆問題の解法に応用する。
論文 参考訳(メタデータ) (2020-12-19T02:03:53Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
ガウス・ニュートン近似は基礎となるベイズニューラルネットワーク(BNN)の局所線形化として理解されるべきである。
この線形化モデルを後部推論に使用するので、元のモデルではなく、この修正モデルを使用することも予測すべきである。
この修正された予測を"GLM predictive"と呼び、Laplace近似の共通不適合問題を効果的に解決することを示す。
論文 参考訳(メタデータ) (2020-08-19T12:35:55Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。